首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 act downstream of the BL sensor PHOTOTROPIN1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the AUXIN/INDOLE-3-ACETIC ACID (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with AUXIN RESPONSE FACTOR7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.  相似文献   

9.
We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light-absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF3, upon light exposure, PIF7 rapidly migrates to intranuclear speckles, where it colocalizes with phyB. However, in striking contrast to PIF3, this process is not accompanied by detectable light-induced phosphorylation or degradation of PIF7, suggesting that the consequences of interaction with photoactivated phyB may differ among PIFs. Nevertheless, PIF7 acts similarly to PIF3 in prolonged red light as a weak negative regulator of phyB-mediated seedling deetiolation. Examination of pif3, pif4, and pif7 double mutant combinations shows that their moderate hypersensitivity to extended red light is additive. We provide evidence that the mechanism by which these PIFs operate on the phyB signaling pathway under prolonged red light is through maintaining low phyB protein levels, in an additive or synergistic manner, via a process likely involving the proteasome pathway. These data suggest that the role of these phyB-interacting bHLH factors in modulating seedling deetiolation in prolonged red light may not be as phy-activated signaling intermediates, as proposed previously, but as direct modulators of the abundance of the photoreceptor.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the shade. Nonetheless, older seedlings are commonly found at full sun. We tested the hypothesis that light capture and photochemical and non-photochemical energy dissipation of both photosystems PSI and PSII adjust with ontogeny and brighter environment. Light energy partitioning in both photosystems was studied in seedlings of different developmental stages (small 9.7 cm, tall 36 cm) under contrasting light environments (8–200 and 1,800–2,043 μmol photons m−2 s−1) in the Chilean evergreen temperate forest. Higher A max, dark respiration, and light compensation and saturation points in sun seedlings of both developmental stages were accompanied by higher rates of electron transport. These seedlings also showed a high fraction of open PSII reaction centres and similar non-photochemical quenching at high-light in both photosystems, showing no effect of developmental stage in these parameters. Conversely, light capture, total thermal dissipation after photoinhibition, active down-regulation of antenna efficiency, and state transitions were higher in smaller seedlings than in taller ones. These changes maintain photostasis, preventing photodamage, while favouring a more oxidized quinone pool. There is an independent effect of seedling development and light acclimation on this transition from shade to sun during early ontogeny. This transition reflects short-term responses of the photosynthetic apparatus to light and longer term responses that depend on seedling developmental stage.  相似文献   

17.
As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs), and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network.  相似文献   

18.
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号