首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. ? The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. ? In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. ? Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.  相似文献   

2.
Arabidopsis GCN5 is a major histone acetyltransferase. The mutation of the gene induces pleiotropic effects on plant development, and affects the expression of a large number of genes. The mechanism of action of this protein in controlling plant chromatin structure and genome expression is not understood. In this work, we report the identification of a number of potential protein interacting partners of GCN5 in Arabidopsis. In particular, GCN5 was shown to interact specifically with a phosphatase 2C protein (AtPP2C-6-6). GCN5 phosphorylated by activities in cellular extracts could be dephosphorylated by AtPP2C-6-6 in vitro. Analysis of T-DNA insertion mutants revealed a positive role of AtPP2C-6-6 in salt induction of stress-inducible genes, while the gcn5 mutation seemed to have no effect on the induction but showed up-regulation of a subset of the stress-inducible genes under non-induced conditions. In addition, the gcn5 mutation seriously reduced acetylation of histone H3K14 and H3K27, whereas the T-DNA insertions of the AtPP2C6-6 gene enhanced the acetylation of these lysine residues. Taken together, the present data suggest that AtPP2C-6-6 may function as a negative regulator of GCN5 activity in Arabidopsis.  相似文献   

3.
4.
A protein phosphatase 2C (PP2C)-homologous cDNA was isolated from Nicotiana tabacum (NtPP2C1). The deduced protein sequence of 416 amino acids showed the highest degree of similarity to the PP2C of Arabidopsis thaliana (AtPP2CA) implicated in abscisic acid signalling. The expression of NtPP2C1 was strongly induced by drought, but repressed by oxidative stress and heat shock. It is suggested that NtPP2C1 operates at the junction of drought, heat shock and oxidative stress.  相似文献   

5.
AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.  相似文献   

6.
7.
Nuclear-encoded chloroplast small heat shock proteins (Cp-sHSPs) play important roles in plant stress tolerance due to their abundance and diversity. Their functions in Primula under heat treatment are poorly characterized. Here, expression analysis showed that the Primula Cp-sHSP gene, PfHSP21.4, was highly induced by heat stress in all vegetative and generative tissues in addition to constitutive expression in certain development stages. PfHSP21.4 was introduced into Arabidopsis, and its function was analysed in transgenic plants. Under heat stress, the PfHSP21.4 transgenic plants showed increased heat tolerance as shown by preservation of hypocotyl elongation, membrane integrity, chlorophyll content and photosystem II activity (Fv/Fm), increased seedling survival and increase in proline content. Alleviation of oxidative damage was associated with increased activity of superoxide dismutase and peroxidase. In addition, the induced expression of HSP101, HSP70, ascorbate peroxidase and Δ1-pyrroline-5-carboxylate synthase under heat stress was more pronounced in transgenic plants than in wild-type plants. These results support the positive role of PfHSP21.4 in response to heat stress in plants.  相似文献   

8.
9.
10.
The nuclear-encoded chloroplast-localized Hsp21 is an oligomeric heat shock protein (Hsp), belonging to the protein family of small Hsps and alpha-crystallins. We have investigated the effects of high temperature and oxidation treatments on the structural properties of Hsp21, both in purified recombinant form and in transgenic Arabidopsis thaliana plants engineered to constitutively overexpress Hsp21. A conformational change was observed for the 300 kDa oligomeric Hsp21 protein during moderate heat stress (< or =40 degrees C) of Arabidopsis plants, as judged by a shift to lower mobility in non-denaturing electrophoresis. Similar changes in mobility were observed when purified recombinant Hsp21 protein was subjected to an oxidant. Exposure of Hsp21 protein to temperatures above 70 degrees C led to irreversible aggregation, which was prevented in presence of the reductant dithiothreitol. The transgenic plants that constitutively overexpressed Hsp21 were more resistant to heat stress than were wildtype plants when the heat stress was imposed under high light conditions. These results suggest that the physiological role of Hsp21 involves a response to temperature-dependent oxidative stress.  相似文献   

11.
12.
Salinity is a major environmental stress that limits agricultural production and geographical distribution of plants. In a previous study, it has been shown that OsMsr9 was induced by cold, drought and heat stresses. However, functions of OsMsr9 at physiological and molecular levels are still unknown. Here, we report that OsMsr9 plays roles in salt tolerance in plants. Quantitative real-time PCR (qPCR) analysis revealed that OsMsr9 was also rapidly and strongly induced by salt stress. Overexpression of OsMsr9 in Arabidopsis and rice showed enhanced salt stress tolerance displaying increased shoot and root elongation, higher survival rates in transgenic plants compared with wild type. OsMsr9 might act as a positive regulator of plant salt tolerance with reinforced expression of stress-related genes, such as RD29A, DREB2A and RAB18 in transgenic plants under salt conditions. Furthermore, transgenic plants accumulated more compatible solutes (proline and soluble sugar) and low level of malondialdehyde, alleviating the changes in reactive oxygen species. These results indicate that OsMsr9 could be a useful gene in developing transgenic crops with enhanced salt tolerance.  相似文献   

13.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

14.
小分子热激蛋白是植物受到热胁迫后的主要表达产物之一,与植物细胞耐热有密切关系。该研究发现,拟南芥小分子热激蛋白基因AtsHsp17.6-CⅠ和AtsHsp17.6-CⅡ 除热激之外,重金属离子Ni+、Pb2+、Cu2+、Zn2+和Al3+均能诱导这2个热激蛋白基因的表达;氧化胁迫和渗透胁迫同样也能诱导它们表达。该研究将由CaMV35S启动子驱动的这2个小分子热激蛋白基因导入拟南芥,RT-PCR分析表明,2个小分子热激蛋白基因在转基因植物中呈现组成型表达。实验结果表明,组成型表达小分子热激蛋白基因AtsHsp17.6-CⅠ的转基因植物表现出对6 μmol·L-1 Cd2+胁迫、0.4% NaCl胁迫的耐受性。研究表明,这2个小分子热激蛋白基因可能参与着多种抗逆途径,推测其能够减轻或抵抗逆境胁迫引起的伤害并对其进行修复。  相似文献   

15.
16.
Temperature extremes are an important adverse factor limiting the effectiveness of microbial pest control agents. They reduce virulence and persistence in the plant root-colonizing insect pathogen Metarhizium robertsii. Small heat shock proteins have been shown to confer thermotolerance in many organisms. In this study, we report on the cloning and characterization of a small heat shock protein gene hsp25 from M. robertsii. hsp25 expression was upregulated when the fungus was grown at extreme temperatures (4, 35, and 42 °C) or in the presence of oxidative or osmotic agents. Expression of hsp25 in Escherichia coli increased bacterial thermotolerance confirming that hsp25 encodes a functional heat shock protein. Overexpressing hsp25 in M. robertsii increased fungal growth under heat stress either in nutrient-rich medium or on locust wings and enhanced the tolerance of heat shock-treated conidia to osmotic stress. In addition, overexpression of hsp25 increased the persistence of M. robertsii in rhizospheric soils in outdoor microcosms, though it did not affect survival in bulk soil, indicating that M. robertsii's survival in soil is dependent on interactions with plant roots.  相似文献   

17.
Although several phloem sap proteins have been identified from protein extracts of heat-treated Arabidopsis seedlings using FPLC gel filtration columns, many of the physiological roles played by these proteins remain to be elucidated. We functionally characterized a phloem protein 2-A1, which encodes a protein similar to phloem lectin. Using a bacterially expressed recombinant protein of AtPP2-A1, we found that it performs dual functions, showing both molecular chaperone activity and antifungal activity. mRNA expression of the AtPP2-1 gene was induced by diverse external stresses such as pathogens, and other signaling molecules, such as ethylene. These results suggest that the AtPP2-A1 molecular chaperone protein plays a critical role in the Arabidopsis defense system against diverse external stresses including fungal pathogenic attack and heat shock.  相似文献   

18.
The AKT3 potassium channel protein was identified as a strongly interacting partner of the Arabidopsis thaliana protein phosphatase 2C (AtPP2CA) in a yeast two-hybrid screen. A deletion analysis indicated that the catalytic domain of AtPP2CA was essential for the interaction with AKT3. Furthermore, the related PP2C phosphatase ABI1 did not interact with AKT3 in yeast.  相似文献   

19.
The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.  相似文献   

20.
The influence of geldanamycin (GA), a specific inhibitor of heat-shock protein Hsp90, on the synthesis of Hsp70 and Hsp90 and thermotolerance of Arabidopsis thaliana seedlings has been studied. Incubation of seedlings with GA under normal conditions induced synthesis of these stress proteins. Treatment of seeds with the Hsp90 inhibitor resulted in elevated constitutive levels of Hsp70 and Hsp90 in seedlings, as well as increased induction of their synthesis under heat shock. The GA effect increased with its concentration. Hsp up-regulation promoted thermotolerance of seedlings. The findings suggest autoregulation of heatshock protein synthesis and regulation of plant tolerance by Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号