首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The intestine of Caenorhabditis elegans is an epithelial tube consisting of only 20 cells and is derived clonally from a single embryonic blastomere called E. We describe the cellular events that shape the intestine. These events include cytoplasmic polarization of cells in the intestinal primordium, the intercalation of specific sets of cells, the generation of an extracellular cavity within the primordium, and adherens junction formation. The polarization of the intestinal primordium is associated with the generation of an asymmetric microtubule cytoskeleton, and microtubule function plays a role in subsequent cell polarity. We show that an isolated E blastomere is capable of generating polarized intestinal cells, indicating that some of the major events in intestinal organogenesis do not depend upon interactions with surrounding tissues. We compare and contrast intestinal organogenesis with some of the basic steps in development of a second epithelial organ, the pharynx, and suggest how these differences lead to organs with distinct shapes.  相似文献   

3.
4.
5.
The LAG-2 membrane protein is a putative signaling ligand for the LIN-12 and GLP-1 receptors of Caenorhabditis elegans. LAG-2, like its Drosophila homologues Delta and Serrate, acts in a conserved signal transduction pathway to regulate cell fates during development. In this article, we investigate the functional domains of LAG-2. For the most part, mutants were constructed in vitro and assayed for activity in transgenic animals. We find a functional role for all major regions except one. Within the extracellular domain, the N-terminal region, which bears no known motif, and the DSL domain are both required. By contrast, the region bearing epidermal growth factor-like repeats can be deleted with no apparent reduction in rescuing activity. The intracellular region is not required for activity but instead plays a role in down-regulating LAG-2 function. Finally, membrane association is critical for mutant rescue.  相似文献   

6.
Mutations in the Caenorhabditis elegans sel-9 gene elevate the activity of lin-12 and glp-1, which encode members of the LIN-12/NOTCH family of receptors. Sequence analysis indicates SEL-9 is one of several C. elegans p24 proteins. Allele-specific genetic interactions suggest that reducing sel-9 activity increases the activity of mutations altering the extracellular domains of LIN-12 or GLP-1. Reducing sel-9 activity restores the trafficking to the plasma membrane of a mutant GLP-1 protein that would otherwise accumulate within the cell. Our results suggest a role for SEL-9 and other p24 proteins in the negative regulation of transport of LIN-12 and GLP-1 to the cell surface, and favor a role for p24 proteins in a quality control mechanism for endoplasmic reticulum-Golgi transport.  相似文献   

7.
8.
The vulval precursor cells (VPCs) of Caenorhabditis elegans are polarized epithelial cells that adopt a precise pattern of fates through regulated activity of basolateral LET-23/EGF receptor and apical LIN-12/Notch. During VPC patterning, there is reciprocal modulation of endocytosis and trafficking of both LET-23 and LIN-12. We identified sel-2 as a negative regulator of lin-12/Notch activity in the VPCs, and found that SEL-2 is the homolog of two closely related human proteins, neurobeachin (also known as BCL8B) and LPS-responsive, beige-like anchor protein (LRBA). SEL-2, neurobeachin and LRBA belong to a distinct subfamily of BEACH-WD40 domain-containing proteins. Loss of sel-2 activity leads to basolateral mislocalization and increased accumulation of LIN-12 in VPCs in which LET-23 is not active, and to impaired downregulation of basolateral LET-23 in VPCs in which LIN-12 is active. Downregulation of apical LIN-12 in the VPC in which LET-23 is active is not affected. In addition, in sel-2 mutants, the polarized cells of the intestinal epithelium display an aberrant accumulation of the lipophilic dye FM4-64 when the dye is presented to the basolateral surface. Our observations indicate that SEL-2/neurobeachin/LRBA is involved in endosomal traffic and may be involved in efficient delivery of cell surface proteins to the lysosome. Our results also suggest that sel-2 activity may contribute to the appropriate steady-state level of LIN-12 or to trafficking events that affect receptor activation.  相似文献   

9.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.  相似文献   

10.
Polley SR  Fay DS 《Genetics》2012,191(4):1367-1380
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.  相似文献   

11.
We describe two different cell interactions that appear to be required for the proper development of a pair of bilaterally symmetrical cells in Caenorhabditis elegans called the intestinal valve cells. Previous experiments have shown that at the beginning of the 4-cell stage of embryogenesis, two sister blastomeres called ABa and ABp are equivalent in development potential. We show that cell interactions between ABp and a neighboring 4-cell-stage blastomere called P2 distinguish the fates of ABa and ABp by inducing descendants of ABp to produce the intestinal valve cells, a cell type not made by ABa. A second cell interaction appears to occur later in embryogenesis when two bilaterally symmetrical descendants of ABp, which both have the potential to produce valve cells, contact each other; production of the valve cells subsequently becomes limited to only one of the two descendants. This second interaction does not occur properly if the two symmetrical descendants of ABp are prevented from contacting each other. Thus the development of the intestinal valve cells appears to require both an early cell interaction that establishes a bilaterally symmetrical pattern of cell fate and a later interaction that breaks the symmetrical cell fate pattern by restricting to only one of two cells the ability to produce a pair of valve cells.  相似文献   

12.
PAR proteins distribute asymmetrically across the anterior-posterior axis of the 1-cell-stage C. elegans embryo, and function to establish subsequent anterior-posterior asymmetries. By the end of the 4-cell stage, anteriorly localized PAR proteins, such as PAR-3 and PAR-6, redistribute to the outer, apical surfaces of cells, whereas posteriorly localized PAR proteins, such as PAR-1 and PAR-2, redistribute to the inner, basolateral surfaces. Because PAR proteins are provided maternally, distinguishing apicobasal from earlier anterior-posterior functions requires a method that selectively prevents PAR activity after the 1-cell stage. In the present study we generated hybrid PAR proteins that are targeted for degradation after the 1-cell stage. Embryos containing the hybrid PAR proteins had normal anterior-posterior polarity, but showed defects in apicobasal asymmetries associated with gastrulation. Ectopic separations appeared between lateral surfaces of cells that are normally tightly adherent, cells that ingress during gastrulation failed to accumulate nonmuscle myosin at their apical surfaces and ingression was slowed. Thus, PAR proteins function in both apicobasal and anterior-posterior asymmetry during the first few cell cycles of embryogenesis.  相似文献   

13.
In Caenorhabditis elegans, two lateral blast cells called P11/12L and P11/12R are symmetric left-right homologs at hatching, migrate subsequently in opposite anteroposterior directions during the first larval stage, and adopt two different fates, thus breaking the symmetry between them. Our results show that, unlike most other cell fate decisions in C. elegans, the orientation of P11/12L/R migration is highly biased, but not fixed. The handedness of their migration is linked to whole body handedness and is randomized in lin-12/Notch mutants and by ablation of the Y cell. Migration handedness is independent of P11 and P12 fate determination, previously shown to require the LIN-44/Wnt and the LIN-3/EGF pathways (L. I. Jiang and P. W. Sternberg, 1998, Development 125, 2337-2347). We further show that several changes in P11/12L/R asymmetry have occurred during nematode evolution: loss of asymmetry or reversals in orientation of migration. Strikingly, for most species studied, handedness of migration is highly biased but not fixed. Thus, whereas the final cell fate pattern of P11/12 is invariant, the developmental route leading to it is subject both to developmental indeterminacy and to evolutionary variations.  相似文献   

14.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.  相似文献   

15.
16.
17.
18.
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.  相似文献   

19.
SUMMARY Caenorhabditis elegans possesses two Notch-like receptors, LIN-12 and GLP-1, which have both overlapping and individual biological functions. We examined the lin-12 and glp-1 genes in closely related nematodes to learn about their evolution. Here we report molecular and functional analyses of lin-12 orthologs from two related nematodes, C. briggsae (Cb) and C. remanei (Cr). In addition, we compare these lin-12 findings with similar studies of Cb-glp-1 and Cr-glp-1 orthologs. Cb-LIN-12 and Cr-LIN-12 retain the same number and order of motifs as Ce-LIN-12. Intriguingly, we find that LIN-12 conservation differs from that of GLP-1 in two respects. First, individual motifs are conserved to a different degree for the two receptors. For example, the transmembrane domain is 16-32% identical among LIN-12 orthologs but 65-70% identical among GLP-1 orthologs. Second, certain amino acids are conserved in a receptor-specific manner, a phenomenon most prevalent in the CC-linker. We suggest that LIN-12 and GLP-1 have been molded by selective constraints that are receptor specific and that the two proteins may not be entirely interchangeable. To analyze the functions of the lin-12 orthologs, we used RNA-mediated interference (RNAi). Cb-lin-12(RNAi) or Cr-lin-12(RNAi) progeny are nearly 100% Lag, a larval lethality typical of C. elegans lin-12 glp-1 double mutants, but not the primary defect observed in Ce-lin-12 null mutants or Ce-lin-12(RNAi). Therefore, LIN-12 functions are similar, but not identical, among the Caenorhabditis species. We suggest that ancestral functions may have been divided between LIN-12 and GLP-1 receptors in a process contributing to the retention of both genes after gene duplication (i.e., subfunctionalization).  相似文献   

20.
Asymmetric cell division is an evolutionarily conserved process that gives rise to daughter cells with different fates. In one-cell stage C. elegans embryos, this process is accompanied by asymmetric spindle positioning, which is regulated by anterior-posterior (A-P) polarity cues and driven by force generators located at the cell membrane. These force generators comprise two Gα proteins, the coiled-coil protein LIN-5 and the GoLoco protein GPR-1/2. The distribution of GPR-1/2 at the cell membrane is asymmetric during mitosis, with more protein present on the posterior side, an asymmetry that is thought to be crucial for asymmetric spindle positioning. The mechanisms by which the distribution of components such as GPR-1/2 is regulated in time and space are incompletely understood. Here, we report that the distribution of the Gβ subunit GPB-1, a negative regulator of force generators, varies across the cell cycle, with levels at the cell membrane being lowest during mitosis. Furthermore, we uncover that GPB-1 trafficks through the endosomal network in a dynamin- and RAB-5-dependent manner, which is most apparent during mitosis. We find that GPB-1 trafficking is more pronounced on the anterior side and that this asymmetry is regulated by A-P polarity cues. In addition, we demonstrate that GPB-1 depletion results in the loss of GPR-1/2 asymmetry during mitosis. Overall, our results lead us to propose that modulation of Gβ trafficking plays a crucial role during the asymmetric division of one-cell stage C. elegans embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号