首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of the pyrimidine dimer in cell killing, DNA synthesis and repair has been studied by utilizing the light-requiring DNA-repair mechanism of photo- reactivation in UV-irradiated chicken-embryo fibroblasts. Survival, as measured by colony-forming ability at 41°C, is increased in cells left in the light. The initial inhibition of DNA synthesis by UV is much less in light-treated cells, and levels reach that of unirradiated controls much faster than when the cells are left in the dark. The number of endonuclease-sensitive sites (dimers)_measured by an assay with a crude extract from M. luteus, rapidly decreases as the cells are allowed to photoreactive. However, in the dark, significant amounts of repair also occur, but at a much lower rate and with a lag phase of several hours. Unscheduled DNA synthesis occurs to a similarly low extent in both dark- and light-treated cells, confirming the finding that some amount of excision repair occurs that is light-independent. When survival is examined as a function of the number of dimers present, the dimers, not the non-dimer products, appear to be responsible for cell killing. In this study, the removal of dimers in vivo by photoreactivation has made it possible to demonstrate directly that dimers are primarily responsible for the deleterious effects of UV on DNA synthesis and survival.  相似文献   

3.
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.  相似文献   

4.
5.
6.
Dependence of cell survival on DNA repair in human mononuclear phagocytes.   总被引:3,自引:0,他引:3  
Mononuclear phagocytes play a central role in the pathogenesis of chronic inflammatory diseases. It is therefore important to define chemotherapeutically exploitable metabolic pathways that distinguish monocytes from other cell types. Blood monocytes do not synthesize deoxynucleotides de novo, and their transformation to macrophages occurs without cell division. Whether or not monocytes can repair DNA damage, and whether or not DNA repair is necessary for their survival, is unknown. The present experiments demonstrate that normal human monocytes, unlike neutrophils, rapidly repair DNA strand breaks induced by gamma-irradiation. Monocyte extracts contain functional immunoreactive DNA polymerase-alpha. DNA repair synthesis in normal monocytes is blocked by aphidicolin, an inhibitor of DNA polymerase-alpha with respect to dCTP. Aphidicolin is also directly toxic to normal monocytes, but has no effect on nondividing lymphocytes or fibroblasts. Compared to most other cell types, monocytes and macrophages have very low dCTP pools, but abundant deoxycytidine kinase activity. This suggests that dCTP derived from salvage pathways is important for DNA repair in these cells. Consistent with this notion, exogenous deoxycytidine could partially protect monocytes from aphidicolin killing. The unexpected toxicity of aphidicolin toward normal human monocytes may be attributable to their high rate of spontaneous DNA strand break formation, to the importance of DNA polymerase-alpha for DNA repair in these cells, and to their minute dCTP pools.  相似文献   

7.
Summary The radiosensitivities and the kinetics for removal of radiation-induced DNA damage were compared for proliferative (P) and quiescent (Q) cells of the lines 66 and 67 derived from a mouse mammary adenocarcinoma. As determined from cell survival assays, the 66 and 67 Q cells were more radiosensitive than their 66 and 67 P counterparts. The rank order of their radiosensitivity was: 67 Q > 66 Q 67 P > 66 P. Induction of radiation damage in the DNA of these cells, as measured by the alkaline elution technique, was identical for 66 and 67 P and Q cells. The repair of this DNA damage was biphasic for 66 and 67 P and Q cells. The half-times for the fast and slow repair phases in 66 Q cells were identical to those previously measured in 67 Q cells. The half-times of the fast and slow repair phases in 66 P cells were also identical to those previously measured in 67 P cells. However, the half-times for the fast and slow repair phases in 66 and 67 Q cells were longer than those measured in their 66 and 67 P counterparts. The 66 cell data are consistent with our previously published hypothesis that Q cells are more radiosensitive than their corresponding P cells because they repair their radiation-induced DNA damage slower. However, our results are not consistent with hypotheses that attempt to explain the radiosensitivity differences between lines 66 and 67 solely on the basis of measurable induction and repair of DNA damage.  相似文献   

8.
9.
SMC (structural maintenance of chromosomes) proteins play fundamental roles in various aspects of chromosome organization and dynamics, including repair of DNA damage. Mutant strains of Mycobacterium smegmatis and Mycobacterium tuberculosis defective in SMC were constructed. Surprisingly, inactivation of smc did not result in recognizable phenotypes in hallmark assays characteristic for the function of these genes. This is in contrast to data for smc null mutants in other species.  相似文献   

10.
Sage E  Harrison L 《Mutation research》2011,711(1-2):123-133
A clustered DNA lesion, also known as a multiply damaged site, is defined as ≥ 2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.  相似文献   

11.
12.
13.
The Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance. Here, we compared functional activities of the full-length and truncated YB-1 proteins and showed that the truncated form was more efficient in protecting cells against doxorubicin treatment. Both forms of YB-1 induced changes in expression of various genes without affecting those responsible for drug resistance. Interestingly, although YB-1 cleavage did not significantly affect its DNA binding properties, truncated YB-1 was detected in complexes with Mre11 and Rad50 under genotoxic stress conditions. We conclude that both full-length and truncated YB-1 are capable of protecting cells against DNA damaging agents, and the truncated form may have an additional function in DNA repair.  相似文献   

14.
15.
Recent approaches to the study of DNA repair in Dictyostelium discoideum are reviewed. Thymidine auxotrophs facilitate the uptake of labeled thymidine into DNA during its replication and repair. The tmpA600 mutation leads to a loss of thymidylate synthase activity, and tdrA600 results in increased transport of thymidine into the cell. In the HPS401 double mutant (tmpA600tdrA600), thymidine is taken up uniformly into the nuclear and mitochondrial DNAs at levels up to 50-fold that in the wild type. tmpA maps on linkage group III. tdrA is on IV or VI, which cosegregate in strains containing this mutation. Alkaline sucrose gradients of nuclei from HPS401 pulsed for 15 min with [3H]thymidine in axenic medium show that the initially labeled single-strand DNA is about 7 x 10(6) daltons, which may be the size of the replicon. This nascent DNA matures in about 45 minutes to 2 x 10(8) daltons. Ultraviolet light (254 nm) decreases the size of the nascent DNA and delays its maturation. In addition to studies of DNA repair utilizing repair-proficient and -deficient mutants of thymidine auxotrophs, we are currently using two approaches for cloning genes involved in repair: 1) genes are sought that can functionally complement repair defects in Saccharomyces cerevisiae following transformation with a D. discoideum DNA library in YEp 24(URA); 4-NQO is used for the selection of RAD transformants; and 2) we have characterized and purified to near-homogeneity two repair enzymes from D. discoideum--uracil-DNA glycosylase and AP-endonuclease. An N-terminal sequence has been determined for the glycosylase, and a synthetic oligonucleotide probe derived from this sequence will be used to screen for this gene. A similar approach is in progress for the AP-endonuclease.  相似文献   

16.
17.
Retinal degenerations such as Retinitis Pigmentosa remain difficult to treat given the diverse array of genes responsible for their aetiology. Rather than concentrate on specific genes, our focus is on identifying therapeutic avenues for the treatment of retinal disease that target general survival mechanisms or pathways. Norgestrel is a synthetic progestin commonly used in hormonal contraception. Here, we report a novel anti-apoptotic role for Norgestrel in diseased mouse retinas in vivo. Dosing with Norgestrel protects photoreceptor cells from undergoing apoptosis in two distinct models of retinal degeneration; the light damage model and the Pde6b(rd10) model. Photoreceptor rescue was assessed by analysis of cell number, structural integrity and function. Improvements in cell survival of up to 70% were achieved in both disease models, indicating that apoptosis had been halted or at least delayed. A speculative mechanism of action for Norgestrel involves activation of survival pathways in the retina. Indeed, Norgestrel increases the expression of basic fibroblast growth factor which is known to both promote cell survival and inhibit apoptosis. In summary, our results demonstrate significant protection of photoreceptor cells which may be attributed to Norgestrel mediated activation of endogenous survival pathways within the retina.  相似文献   

18.
Individual and group differences were revealed in the capacity of rat peripheral blood lymphocytes of DNA repair in response to the DNA damaging test-effect of irradiation in vitro. The survival rate of rats irradiated with a dose inducing 50-per cent death was in a definite relationship with the repair capacity of blood lymphocyte DNA in each animal individual prior to irradiation.  相似文献   

19.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients, the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg, which are involved in the activation of Fanconi pathway, in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors, but not that of postmitotic neurons, was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice, we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition, embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.  相似文献   

20.
DNA topoisomerases and DNA repair   总被引:5,自引:0,他引:5  
DNA topoisomerases are enzymes that can modify, and may regulate, the topological state of DNA through concerted breaking and rejoining of the DNA strands. They have been believed to be directly involved in DNA excision repair, and perhaps to be required for the control of repair as well. The vicissitudes of this hypothesis provide a noteworthy example of the dangers of interpreting cellular phenomena without genetic information and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号