首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.  相似文献   

2.
In the rhizosphere and their interaction with plants rhizobia encounter many different plant compounds, including phytohormones like auxins. Moreover, some rhizobial strains are capable of producing the auxin, indole-3-acetic acid (IAA). However, the role of IAA for the bacterial partner in the legume– Rhizobium symbiosis is not known. To identify the effect of IAA on rhizobial gene expression, a transposon (mTn 5gusA - oriV ) mutant library of Rhizobium etli , enriched for mutants that show differential gene expression under microaerobiosis and/or addition of nodule extracts as compared with control conditions, was screened for altered gene expression upon IAA addition. Four genes were found to be regulated by IAA. These genes appear to be involved in plant signal processing, motility or attachment to plant roots, clearly demonstrating a distinct role for IAA in legume– Rhizobium interactions.  相似文献   

3.
4.
We studied the effects of auxin (indolyl-3 acetic acid) on formation of the primary polarity axis in zygotes of the brown algae Fucus vesiculosus. Within the first 2.5 h after fertilization, the zygotes release this phytohormone in the environment. The treatment of developing zygotes with the inhibitor of indolyl-3-acetic acid transport from the cell triiodobenzoic acid at 5 mg/l arrests the auxin secretion and leads to its accumulation in the cells. This causes a significant delay in zygote polarization. The treatment of zygotes with the exogenous indolyl-3-acetic acid at 1 mg/l stimulates cell polarization and formation of a rhizoid process. When auxin was added to the medium with triiodobenzoic acid, the inhibitory effect of the latter was fully relieved. It has been proposed that the content of indolyl-3-acetic acid in the environment is a key factor in the induction of polarity of the F. vesiculosus zygotes.  相似文献   

5.
E132 ( sym 21) is a stable pleiotropic mutant of Pisum sativum cv. Sparkle obtained by mutagenesis with ethyl methane sulfonic acid. The line forms few nodules and short, highly branched roots. Microscopy studies revealed that infection by rhizobia is normal, and low nodulation is mainly due to a low rate of emergence of the nodule meristems. E132 shoots depressed nodulation on Sparkle stocks, whereas in reciprocal grafts more nodules formed on E132 stocks than on control roots or self-grafted Sparkle plants. Nodule number on the mutant was slightly increased by exogenous ethylene inhibitors, which, however, did not alter the root phenotype.  相似文献   

6.
7.
8.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   

9.
We studied the ethylene-insensitive, hypernodulating mutant, sickle (skl), to investigate the interaction of ethylene with auxin transport during root nodulation in Medicago truncatula. Grafting experiments demonstrated that hypernodulation in skl is root controlled. Long distance transport of auxin from shoot to root was reduced by rhizobia after 24 h in wild type but not in skl. Similarly, the ethylene precursor 1-amino cyclopropane-1-carboxylic acid inhibited auxin transport in wild type but not in skl. Auxin transport at the nodule initiation zone was significantly reduced by rhizobia after 4 h in both wild type and skl. After 24 h, auxin transport significantly increased at the nodule initiation zone in skl compared to wild type, accompanied by an increase in the expression of the MtPIN1 and MtPIN2 (pin formed) auxin efflux transporters. Response assays to different auxins did not show any phenotype that would suggest a defect of auxin uptake in skl. The auxin transport inhibitor N-1-naphthylphtalamic acid inhibited nodulation in wild type but not skl, even though N-1-naphthylphtalamic acid still inhibited auxin transport in skl. Our results suggest that ethylene signaling modulates auxin transport regulation at certain stages of nodule development, partially through PIN gene expression, and that an increase in auxin transport relative to the wild type is correlated with higher nodule numbers. We also discuss the regulation of auxin transport in skl in comparison to previously published data on the autoregulation mutant, super numerary nodules (van Noorden et al., 2006).  相似文献   

10.
Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Several stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axr1-3) or ethylene (etr1-1) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles from independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans distal to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development.  相似文献   

11.
The hormonal status of the pollen-pistil system in Petunia hybrida L. during the progamic phase of fertilization was investigated. The contents of indolyl-3-acetic acid (IAA), abscisic acid (ABA), and cytokinins, as well as the rate of ethylene production in the pistils and their parts (stigma, style, and ovary) were measured over an 8-h period following compatible and self-incompatible pollination. In both pollinations, the phytohormones were present in various proportions in the stigma, style and ovary: the stigma was the main site of ethylene synthesis and contained 90% of the ABA, while the style contained 80% of the total cytokinin content in the pollinated pistil. Relatively low levels of hormones in the ovary did not influence the hormonal status of the pollen-pistil system. The interaction of the male gametophyte with the stigmatic tissues was accompanied by a 7- to 10-fold increase in ethylene production and a 1.5- to 2.0-fold increase in IAA content in the pollen-pistil system over 0–4 h. Pollen tube growth after self-incompatible pollination, in contrast to compatible pollination, was accompanied by a 3-fold increase in the ABA content in the stigma and style and by a 5-fold higher cytokinin content in the stylar tissues. Thus, the ethylene/ABA status of the stigma may play a role in controlling the processes of adhesion, hydration, and germination of pollen grains during pollination while the auxin/cytokinin status of the style may be involved in controlling pollen tube growth.  相似文献   

12.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

13.
Legume plants have an exceptional capacity for association with microorganisms, ranging from largely nonspecific to very specific interactions. Legume-rhizobial symbiosis results in major developmental and metabolic changes for both the microorganism and host, while providing the plant with fixed nitrogen. A complex signal exchange leads to the selective rhizobial colonization of plant cells within nodules, new organs that develop on the roots of host plants. Although the nodulation mechanism is highly specific, it involves the same subset of plant phytohormones, namely auxin, cytokinin, and ethylene, which are required for root development. In addition, nodulation triggered by the rhizobia affects the development of the host root system, indicating that the microorganism can alter host developmental pathways. Nodulation by rhizobia is a prime example of how microorganisms and plants have coevolved and exemplifies how microbial colonization may affect plant developmental pathways.  相似文献   

14.
The data are reviewed on the population structure and evolutionary dynamics of the nodule bacteria (rhizobia) which are among the most intensively studied microorganisms. High level of the population polymorphism was demonstrated for the rhizobia populations using the enzyme electrophoresis (MLEE profiles). The average value of Nei's coefficient of heterogeneity (H = 1 - sigma pi2 [n/(n - 1)]) were: 0.590 for rhizobia (Rhizobium, Bradyrhizobium), 0.368 for enterobacteria (Escherichia, Salmonella, Shigella) and 0.452 for pathogenic bacteria (Bordetella, Borrelia, Erysipelothrix, Haemophilus, Helicobacter, Listeria, Mycobacterium, Neisseria, Staphylococcus) populations. In spite of being devoid of the effective systems for the gene conjugative transfer, many rhizobia populations possess an essentially panmictic structure. However, the enterobacteria populations in which the gene transfer may be facilitated due to the conjugative F- and R-factors, usually display the clonal population structure. The legume host plant is proved to be a key factor that determines the high levels of polymorphism and of panmixis as well as high evolutionary rates of the symbiotic bacteria populations. The host may ensure: a) an increase in mutation and gene transfer frequencies; b) stimulation of the competitive (selective) processes in both symbiotic and free-living rhizobia populations. A "cyclic" model of the rhizobia microevolution is presented which allows to assess the inputs the interstrain competition for the saprophytic growth and for the host nodulation into evolution of a plant-associated rhizobia population. The nodulation competitiveness in the rhizobia populations is responsible for the frequency-dependent selection of the rare genotypes which may arise in the soil bacterial communities as a result of the transfer of symbiotic (sym) genes from virulent rhizobia strains to either avirulent rhizobia or to the other (saprophytic, phytopathogenic) bacteria. Therefore, the nodulation competitiveness may ensure: a) panmictic structure of the natural rhizobia populations; b) high taxonomic diversity of rhizobia which was apparently caused by a broad sym gene expansion in the soil bacterial communities. The kin selection models are presented which explain evolution of the "altruistic" (essential for the host plant, but not for the bacteria themselves) symbiotic traits (e.g., the ability for symbiotic nitrogen fixation and for differentiation into non-viable bacteroids) in the rhizobia populations. These models are based on preferential multiplication of the nitrogen-fixing clones either in planta (due to an elevated supply of the nitrogen-fixing nodules with photosynthates) or ex planta (due to a release of the rhizopines from the nitrogen-fixing nodules). Speaking generally, interactions with the host plants provide a range of mechanisms increasing a genetic heterogeneity and an evolutionary potential in the associated rhizobia populations.  相似文献   

15.
S ummary . Treating seedling roots of several plant species with cultures of Azotobacter paspali changed plant growth and development and significantly increased weight of leaves and roots; effects were probably caused by plant growth regulators. Culture supernatant fluids contained indolyl-3-acetic acid, at least 3 gibberellins and 2 cytokinins. The added inoculum of A. paspali survived in plant rhizospheres for only a few weeks and no nitrogen was fixed in the root zone of young Paspalum notatum , the grass with which A. paspali is associated.  相似文献   

16.
Li J  Dai X  Zhao Y 《Plant physiology》2006,140(3):899-908
Although auxin response factors (ARFs) are the first well-characterized proteins that bind to the auxin response elements, elucidation of the roles of each ARF gene in auxin responses and plant development has been challenging. Here we show that ARF19 and ARF7 not only participate in auxin signaling, but also play a critical role in ethylene responses in Arabidopsis (Arabidopsis thaliana) roots, indicating that the ARFs serve as a cross talk point between the two hormones. Both arf19 and arf7 mutants isolated from our forward genetic screens are auxin resistant and the arf19arf7 double mutant had stronger auxin resistance than the single mutants and displayed phenotypes not seen in the single mutants. Furthermore, we show that a genomic fragment of ARF19 not only complements arf19, but also rescues arf7. We conclude that ARF19 complements ARF7 at the protein level and that the ARF7 target sequences are also recognized by ARF19. Therefore, it is the differences in expression level/pattern and not the differences in protein sequences between the two ARFs that determines the relative contribution of the two ARFs in auxin signaling and plant development. In addition to being auxin resistant, arf19 has also ethylene-insensitive roots and ARF19 expression is induced by ethylene treatment. This work provides a sensitive genetic screen for uncovering auxin-resistant mutants including the described arf mutants. This study also provides a likely mechanism for coordination and integration of hormonal signals to regulate plant growth and development.  相似文献   

17.
To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions.  相似文献   

18.
We investigated the relation between auxin-induced gene expression and the rapid auxin-induced growth inhibition in Arabidopsis thaliana roots. The natural auxin indole-3-acetic acid (IAA) induced a strong activation of gene expression as visualized by the DR5rev::GFP reporter gene technique. This effect was specific for active auxins and was abolished in knockout mutants of the F-box auxin receptors. We measured the IAA-induced growth inhibition at high time resolution and show that the F-box auxin receptor mutants failed to display this effect. We conclude that the F-box auxin receptors are needed for the response. In hypocotyls, auxin induces an increase in elongation growth, and this effect has been earlier shown to be independent of the F-box receptors. Based on these findings, we discuss differences in the growth control modes in roots and shoots. We demonstrate that the rapid auxin-induced root growth inhibition, unlike the induction of growth in hypocotyls, requires the presence of the F-box auxin receptors.  相似文献   

19.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

20.
In pea (Pisum sativum) up to 50 nodulation mutants are known, several of which are affected in the early steps of the symbiotic interaction with Rhizobium sp. bacteria. Here we describe the role of the sym2 gene in nodulation (Nod) factor perception. Our experiments show that the sym2A allele from the wild pea variety Afghanistan confers an arrest in infection-thread growth if the Rhizobium leguminosarum bv viciae strain does not produce Nod factors with a NodX-mediated acetylation at their reducing end. Since the induction of the early nodulin gene ENOD12 in the epidermis and the formation of a nodule primordium in the inner cortex were not affected, we conclude that more than one Nod factor-perception mechanism is active. Furthermore, we show that sym2A-mediated control of infection-thread growth was affected by the bacterial nodulation gene nodO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号