首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Horton  W. A. Cramer 《BBA》1974,368(3):348-360
(1) (a) A concentration range of ferricyanide ( 0.125–0.5 mM) can be found which in the dark causes oxidation of cytochrome ƒ with two distinct kinetic components of comparable amplitude. The slow oxidation has a half time of 1–2 min. (b) The oxidation of cytochrome ƒ by ferricyanide is rapid and monophasic after the chloroplasts are frozen and thawed. (c) The oxidation of cytochrome b-559 by ferricyanide in the dark is mostly monophasic with a time course similar to that of the fast component in the cytochrome ƒ oxidation. (d) Ascorbate reduction of cytochromes ƒ and b-559 appears monophasic. Reduction of cytochrome b-559 by ascorbate is somewhat faster, and that by hydroquinone somewhat slower, than the corresponding reduction of cytochrome ƒ.

(2) (a) The kinetics of dark ferricyanide oxidation of cytochrome ƒ after actinic preillumination in the presence of an electron acceptor are approximately monophasic with a half time of about 30 s and do not show the presence of the slowly oxidized component observed after prolonged dark incubation. (b) The effect of actinic preillumination in altering the time course of ferricyanide oxidation appears to persist for several minutes in the dark. (c) Preillumination causes an increase in the extent of cytochrome b-559 oxidation by low concentrations of ferricyanide. The increase is inhibited if 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea is present during the preillumination. (d) The presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea during preillumination does not inhibit the amplitude or rate of ferricyanide oxidation of cytochrome ƒ, although the presence of the inhibitor KCN does cause such inhibition.

(3) It is proposed that a significant fraction of the cytochrome ƒ population resides at a position in the membrane relatively inaccessible to the aqueous interface compared to high potential cytochrome b-559. Actinic illumination would cause a structural or conformational change in the cytochrome ƒ and/or the membrane resulting in an increase in accessibility to this fraction of the cytochrome ƒ population.  相似文献   


2.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


3.
David B. Knaff  Richard Malkin 《BBA》1974,347(3):395-403
The primary reaction of Photosystem II has been studied over the temperature range from −196 to −20 °C. The photooxidation of the reaction-center chlorophyll (P680) was followed by the free-radical electron paramagnetic resonance signal of P680+, and the photoreduction of the Photosystem II primary electron acceptor was monitored by the C-550 absorbance change.

At temperatures below −100 °C, the primary reaction of Photosystem II is irreversible. However, at temperatures between −100 and −20 °C a back reaction that is insensitive to 3-(3′,4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) occurs between P680+ and the reduced acceptor.

The amount of reduced acceptor and P680+ present under steady-state illumination at temperatures between −100 and −20 °C is small unless high light intensity is used to overcome the competing back reaction. The amount of reduced acceptor present at low light intensity can be increased by adjusting the oxidation-reduction potential so that P680+ is reduced by a secondary electron donor (cytochrome b559) before P680+ can reoxidize the reduced primary acceptor. The photooxidation of cytochrome b559 and the accompanying photoreduction of C-550 are inhibited by DCMU. The inhibition of C-550 photoreduction by DCMU, the dependence of P680 photooxidation and C-550 photoreduction on light intensity, and the effect of the availability of reduced cytochrome b559 on C-550 photoreduction are unique to the temperature range where the Photosystem II primary reaction is reversible and are not observed at lower temperatures.  相似文献   


4.
5.
6.
David B. Knaff 《BBA》1973,292(1):186-192
Removal of plastocyanin from Photosystem I subchloroplast particles had no effect on the Photosystem I photooxidation of cytochrome f. Chloroplasts depleted of plastocyanin by sonication lost the ability to reduce cytochrome f in Photosystem II light. Addition of plastocyanin restored the photoreduction of cytochrome f. These results are consistent with a plastocyanin site on the reducing side of cytochrome f.  相似文献   

7.
Absorbance changes are reported associated with Photosystem II and showing a periodicity of two and four as a function of flash number.

The absorbance changes showing a periodicity of two were found to occur in the presence of artificial electron donors as well and are presumably caused by the secondary electron acceptor R of Photosystem II. The absorbance difference spectra suggest that R is a plastoquinone molecule, which is reduced to its semiquinone anion after an uneven number of flashes. After an even number of flashes, the semiquinone is reoxidized. The absorbance changes showing a periodicity of four are tentatively ascribed to the charge accumulating donor complex of Photosystem II.  相似文献   


8.
T.S. Desai  V.G. Tatake  P.V. Sane 《BBA》1977,462(3):775-780
Out of the six thermoluminescence bands reported for a mature leaf, one band (Zv) appearing at the lowest temperatures is dependent on the temperature of illumination. The characteristics of this band in fresh leaf are compared with those in a leaf heated to 60°C for 5 min. It is concluded here that this band, following illumination at temperatures lower than 173 K, is part of Arnold and Azzi's Z band (Arnold, W. and Azzi, J.R. (1971) Photochem. Photobiol. 14, 233–240). However, it is a part of peak I when observed subsequent to illumination beyond 173 K. An explanation for the appearance of this band at different temperatures is proposed.  相似文献   

9.
10.
G. Kulandaivelu  H. Senger 《BBA》1976,430(1):94-104
The kinetics (region of seconds) of the light-induced 520 nm absorbance change and its dark reversal have been studied in detail in the wild type and in some pigment and photosynthetic mutants of Scenedesmus obliquus. The following 5 lines of evidence led us to conclude that the signal is entirely due to the photosystem I reaction modified by electron flow from Photosystem II.Gradual blocking of the electron transport with 3(3,4-dichlorophenyl)-1,1-dimethylurea resulted in diminution and ultimate elimination of the biphasic nature of the signal without reducing the extent of the absorbance change or of the dark kinetics. On the contrary, blocking electron flow at the oxidizing side of plastoquinone with 2, 5-dibromo-3-methyl-6-isoprophyl-p-benzoquinone or inactivating the plastocyanin with KCN, prolonged the dark reversal of the absorbance change apart from abolishing the biphasic nature of the signal.Action spectra clearly indicate that the main signal (I) is due to electron flow in Photosystem I and that its modification (Signal II) is due to the action of Photosystem II.Signal I is pH independent, whereas Signal II demonstrates a strong pH dependence, parallel to the O2-evolving capacity of the cells.Chloroplast particles isolated from the wild type Scenedesmus cells demonstrated in the absence of any added artificial electron donor or acceptor and also under non-phosphorylation conditions the 520 nm absorbance change with approximately the same magnitude as whole cells. The dark kinetics of the particles were comparatively slower. Removal of plastocyanin and other electron carriers by washing with Triton X-100 slowed down the kinetics of the dark reversal reaction to a greater extent. A similar positive absorbance change at 520 nm and slow dark reversal was also observed in the Photosystem I particles prepared by the Triton method.Mutant C-6E, which contains neither carotenoids nor chlorophyll b and lacks Photosystem II activity, demonstrates a normal signal I of the 520 nm absorbance change. This latter result contradicts the postulate that carotenoids are the possible cause of the 520 nm absorbance change.  相似文献   

11.
Yigal Ilan  Avigdor Shafferman 《BBA》1978,501(1):127-135
The oxidation reaction of ferrocytochrome c (produced in situ by pulse radiolysis) by Fe(CN)3?6, was used to probe the effect of alcohol/water mixtures on the reactivity of the protein. Reduced cytochrome c is oxidized in a biphasic process. The relative contribution of each phase depended on: pH, alcohol concentration and temperature. pKa values were derived from the kinetic data. These pKa values were identical with the spectroscopic pKa values determined under similar conditions by monitoring the 695 nm absorption band of the oxidized protein. The two phases of oxidation were therefore related to the oxidation of a relaxed and a nonrelaxed conformer of reduced cytochrome c produced in situ. A shift in the pKa of ferricytochrome c and a retardation of the redox reactions of both the reduced and the oxidized protein were observed at low alcohol concentrations (up to 5 mol %). These low alcohol concentrations are known to affect the structure of water (Yaacobi, M. and Ben-Naim, A. (1973) J. Sol. Chem. 5, 425?443; Ben-Naim, A. (1967) J. Phys. Chem. 71, 4002?4007 and Ben-Naim, A. and Baer, S. (1964) Trans. Faraday Soc. 60, 1736?1741) but have only minor effects on the protein. Accordingly, the kinetic results are interpreted on the basis of involvement of water molecules in the reaction complex of cytochrome c with its redox substrates.  相似文献   

12.
The inhibitory effect of antimycin A on the slow rise of the flash-induced electrochromic absorbance change was reinvestigated in intact chloroplasts isolated from pea leaves. It is show that in the absence of nigericin and +K at low repetition rates (<0.5 s?1) of the excitation flashes not only the slow (~ 10 ms) rise but also the initial (?1 ms) rise generated by photosystem 1 is inhibited by antimycin A.  相似文献   

13.
Alan Stemler 《BBA》1977,460(3):511-522
Radioactive labelling techniques show that isolated broken chloroplasts can take up HCO3 in the dark. There are two pools of binding sites for this ion on, or within, the thylakoid membranes. A smaller, high affinity pool exists at a concentration of one HCO3 bound per 380–400 chlorophyll molecules. Removal of HCO3 bound in this pool requires special conditions and results in greater than 90% inhibition of oxygen evolution. The inhibition is fully reversed when HCO3 is added back. HCO3 bound in the small pool does not necessarily exchange with free HCO3 in the dark or in light. Evidence presented suggests that this site is very near the site of action of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea. A second, much larger, pool of HCO3 binding sites also exists in a concentration approaching that of the bulk chlorophyll. These sites have a much lower affinity for HCO3, and their function has not yet been determined.  相似文献   

14.
Shigeru Itoh  Mitsuo Nishimura 《BBA》1977,460(3):381-392
Changes in the rates of dark oxidation and reduction of the primary electron acceptor of System II by added oxidant and reductant were investigated by measuring the induction of chlorophyll fluorescence under moderate actinic light in 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-inhibited chloroplasts at pH values between 3.6 and 9.5. It was found that:

1. (1) The rate of dark oxidation of photoreduced primary acceptor was very slow at all the pH values tested without added electron acceptor.

2. (2) The rate was accelerated by the addition of ferricyanide in the whole pH range. It was dependent approximately on the 0.8th power of the ferricyanide concentration.

3. (3) The rate constant for the oxidation of the primary acceptor by ferricyanide was pH-dependent and became high at low pH. The value at pH 3.6 was more than 100 times that at pH 7.8.

4. (4) The pH-dependent change in the rate constant was almost reversible when the chloroplasts were suspended at the original pH after a large pH change (acid treatment).

5. (5) An addition of carbonylcyanide m-chlorophenylhydrazone or heavy metal chelators had little effect on the rate of dark oxidation of the primary acceptor by ferricyanide.

6. (6) The dark reduction of the primary acceptor by sodium dithionite also became faster at low pH.

From these results it is concluded that at low pH the primary acceptor of System II becomes accessible to the added hydrophilic reagents even in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea.  相似文献   


15.
16.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

17.
Specific activities of photophosphorylation and light-dependent pH rise at different stages of the greening process, have been measured as a function of the illumination intensity.  相似文献   

18.
W. Kaiser  W. Urbach 《BBA》1976,423(1):91-102
1. Dihydroxyacetone phosphate in concentrations ? 2.5 mM completely inhibits CO2-dependent O2 evolution in isolated intact spinach chloroplasts. This inhibition is reversed by the addition of equimolar concentrations of Pi, but not by addition of 3-phosphoglycerate. In the absence of Pi, 3-phosphoglycerate and dihydroxyacetone phosphate, only about 20% of the 14C-labelled intermediates are found in the supernatant, whereas in the presence of each of these substances the percentage of labelled intermediates in the supernatant is increased up to 70–95%. Based on these results the mechanism of the inhibition of O2 evolution by dihydroxyacetone phosphate is discussed with respect to the function of the known phosphate translocator in the envelope of intact chloroplasts.2. Although O2 evolution is completely suppressed by dihydroxyacetone phosphate, CO2 fixation takes place in air with rates of up to 65μ mol · mg?1 chlorophyll · h?1. As non-cyclic electron transport apparently does not occur under these conditions, these rates must be due to endogenous pseudocyclic and/or cyclic photophosphorylation.3. Under anaerobic conditions, the rates of CO2 fixation in presence of dihydroxyacetone phosphate are low (2.5–7 μmol · mg?1 chlorophyll · h?1), but they are strongly stimulated by addition of dichlorophenyl-dimethylurea (e.g. 2 · 10?7 M) reaching values of up to 60 μmol · mg?1 chlorophyll · h?1. As under these conditions the ATP necessary for CO2 fixation can be formed by an endogenous cyclic photophosphorylation, the capacity of this process seems to be relatively high, so it might contribute significantly to the energy supply of the chloroplast. As dichlorophenyl-dimethylurea stimulates CO2 fixation in presence of dihydroxyacetone phosphate under anaerobic but not under aerobic conditions, it is concluded that only under anaerobic conditions an “overreduction” of the cyclic electron transport system takes place, which is removed by dichlorophenyl-dimethylurea in suitable concentrations. At concentrations above 5 · 10?7 M dichlorophenyl-dimethylurea inhibits dihydroxyacetone phosphate-dependent CO2 fixation under anaerobic as well as under aerobic conditions in a similar way as normal CO2 fixation. Therefore, we assume that a properly poised redox state of the electron transport chain is necessary for an optimal occurrence of endogenous cyclic photophosphorylation.4. The inhibition of dichlorophenyl-dimethylurea-stimulated CO2 fixation in presence of dihydroxyacetone phosphate by dibromothymoquinone under anaerobic conditions indicates that plastoquinone is an indispensible component of the endogenous cyclic electron pathway.  相似文献   

19.
1. Using single chloroplasts of Peperomia metallica the kinetics of light-induced potential changes were studied. Three kinetic components (the initial fast rise, the decay in the light and the decay in the dark) were found to be characterized by time constants 4, 220 and 60 ms, respectively at light intensity 5000 lx and temperature 18 °C. After flash excitation the potential kept on rising for about 10 ms. Cooling of the medium down to 5 °C had no effect on the duration of potential rise after the flash.2. Variations in the medium temperature in the range 2–23 °C had little effect on photoresponse magnitude but resulted in significant acceleration of decay in the light.3. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5 · 10?6 M) resulted in suppression of the magnitude of the photoresponse but was not accompanied by any change in the rate of initial rise of potential. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-inhibited photoresponse could be restored and even enhanced by subsequent addition of N-methylphenazonium methosulfate (10?4 M). N-Methylphenazonium methosulfate essentially influenced the time course and light-intensity curves of photoresponse.4. The chloroplast photoresponses were of different time-courses when elicited by red (640 nm) or far red (712 nm) light. This fact as well as an enhancement effect of combined illumination by two intermittent light beams indicate on the interaction of two photosynthetic pigment systems when the photoelectric response was formed.5. An imposed electrical field resulted in stimulation or suppression of chloroplast photoresponse depending on the polarity of the field. No indications for the existance of “reversal potential” for photoelectric response were obtained.6. A kinetic scheme of photoresponse formation is proposed, which includes two sequential photochemical reactions of photosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号