首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T-cell cloning assay, which enables the enumeration and molecular analysis of 6-thioguanine resistant (HPRT-negative) mutant T-cells, has been extensively used for studying human somatic gene mutation in vivo. However, large inter-laboratory variations in the HPRT mutant frequency (MF) call for further investigation of inter-laboratory differences in the experimental methodology, and development of an optimal but easy uniform cloning protocol. As part of the EU Concerted Action on HPRT Mutation (EUCAHM), we have carried out two Ring tests for the T-cell cloning assay. For each test, duplicate and coded samples from three buffy coats were distributed to five laboratories for determination of MF using six different protocols. The results indicated a good agreement between split samples within each laboratory. However, both the cloning efficiencies (CEs) and MFs measured for the same blood donors showed substantial inter-laboratory variations. Also, different medium compositions used in one and the same laboratory resulted in a remarkable difference in the level of MF. A uniform operating protocol (UOP) was proposed and compared with the traditional protocols in the second Ring test. The UOP (preincubation) increased the CE in laboratories traditionally using preincubation, but decreased the CE in laboratories traditionally using priming. Adjusted for donor, use of different protocols contributed significantly to the overall variation in lnCE (P=0.0004) and lnMF (P=0.03), but there was no significant laboratory effect on the lnCE (P=0.38) or lnMF (P=0.14) produced by the UOP alone. Finally, a simplified version of the UOP using the serum-free medium X-Vivo 10 and PMA was tested in one laboratory, and found to produce a considerable increase in CE. This modified UOP needs to be further evaluated in order to be used for future databases on HPRT MFs in various populations.  相似文献   

2.
Mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the peripheral blood lymphocytes obtained from 44 healthy individuals (23 non-smokers and 21 smokers) of an Indian male population was studied using T-lymphocyte cloning assay. It was found that ln MF increased with age at a rate of 2.5% per year (P < 0.001). Blood samples from smokers showed a significant (P < 0.037) increase in HPRT mutant frequency (MF) (10.43 ± 4.74 × 10−6) as compared to that obtained from non-smokers (7.69 ± 3.69 × 10−6). This study also showed a significant (P < 0.027) inverse correlation between ln MF and non-selected cloning efficiency (CE). However, with respect to age no variation was observed in cloning efficiency. The results obtained in this study showed a good comparison with those reported in different populations of the world.  相似文献   

3.
Mutations arising in vivo in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of T-lymphocytes provide a measure of mutation induction in human somatic cells. Studies of measured background HPRT mutant frequency (MF) values show wide inter-individual variation. At the extremes are individual with ‘outlier’ MF values, i.e., non-exposed individuals with MF > 100 × 10−6 [Robinson et al., Mutation Res. 313 (1994) 227–247.]. The elevated HPRT MF in one well-studied outlier is due to the in vivo expansion of mutant cells possessing an identical T-cell receptor (TCR) gene rearrangement pattern. We report here that this in vivo expanding TCR clone shows multiple different HPRT mutations and thus possesses a mutator phenotype. Other individuals with T-cell mutator phenotypes have been found, suggesting that this phenomenon may contribute to the extremes of variation in HPRT MFs in the human population.  相似文献   

4.
This study was conducted to determine the utility of deletion spectrum and mutant frequency (MF) of the hypoxanthine phosphoribosyl transferase gene (HPRT) as indicators of radiation exposure in Russian Liquidators who served in 1986 or 1987 in the clean up effort following the nuclear power plant accident at Chernobyl. HPRT MF was determined using the cloning assay for 117 Russian Controls and 122 Liquidators whose blood samples were obtained between 1991 and 1998. Only subjects from whom mutants were obtained for deletion analysis are included. Multiplex PCR analysis was performed on cell extracts of 1080 thioguanine resistant clones from Controls and 944 clones from Liquidators. Although the deletion spectra of Liquidators and Controls were similar overall, the Liquidator deletion spectrum was heterogeneous over time. Most notable, the proportion of total gene deletions was higher in 1991–1992 Liquidators than in Russian Controls (χ2=10.5, p=0.001) and in 1993–1994 Liquidators (χ2=8.3, p=0.004), and was marginally elevated relative to 1995–1996 Liquidators (χ2=3.3, p=0.07). This type of mutation has been highly associated with radiation exposure. Total gene deletions were not increased after 1992. Band shift mutations were also increased in the 1991–1992 Liquidators but were associated with increased MF of both Liquidators and Controls (p=0.009), not with increased MF in 1991–1992 Liquidators (p=0.7), and hence are not believed to be associated with radiation exposure. Regression analysis demonstrated that relative to Russian Controls HPRT MF was elevated in Liquidators overall when adjusted for age and smoking status (37%, p=0.0001), and also was elevated in Liquidators sampled in 1991–1992 (72%, p=0.0076), 1993–1994 (22%, p=0.037), and 1995–1996 (62%, p=0.0001). In summary, HPRT MF was found to be the more sensitive and persistent indicator of radiation exposure, but the specificity of total gene deletions led to detection of probable heterogeneity of radiation exposure within the exposed population.  相似文献   

5.
Epidemiological studies have demonstrated associations between maternal tobacco smoke exposure and consumption of alcohol during pregnancy and increased risk of pediatric malignancies, particularly infant leukemias. Molecular evidence also suggests that somatic mutational events occurring during fetal hematopoiesis in utero can contribute to this process. As part of an ongoing multi-endpoint biomarker study of 2000 mothers and newborns, the HPRT T-lymphocyte cloning assay was used to determine mutant frequencies (Mf) in umbilical cord blood samples from an initial group of 60 neonates born to a sociodemographically diverse cohort of mothers characterized with respect to age, ethnicity, socioeconomic status, and cigarette smoke and alcohol exposure. Non-zero Mf (N=47) ranged from 0.19 to 5.62×10−6, median 0.70×10−6, mean±SD 0.98±0.95×10−6. No significant difference in Mf was observed between female and male newborns. Multivariable Poisson regression analysis revealed that increased HPRT Mf were significantly associated with maternal consumption of alcohol at the beginning [Relative Rate (RR)=1.84, 95% CI=0.99–3.40, P=0.052) and during pregnancy (RR=2.99, 95% CI=1.14–7.84, P=0.026). No independent effect of self-reported active maternal cigarette smoking, either at the beginning or throughout pregnancy, nor maternal passive exposure to cigarette smoke was observed. Although based on limited initial data, this is the first report of a positive association between maternal alcohol consumption during pregnancy and HPRT Mf in human newborns. In addition, the spectrum of mutations at the HPRT locus was determined in 33 mutant clones derived from 19 newborns of mothers with no self-reported exposure to tobacco smoke and 14 newborns of mothers exposed passively or actively to cigarette smoke. In the unexposed group, alterations leading to specific exon 2–3 deletions, presumably as a result of illegitimate V(D)J recombinase activity, were found in five of the 19 mutants (26.3%); in the passively exposed group, two exon 2–3 deletions were present among the seven mutants (28.6%); and in the actively exposed group, six of the seven mutants (85.7%) were exon 2–3 deletions. Although no overall increase in HPRT Mf was observed and the number of mutant clones examined was small, these initial results point to an increase in V(D)J recombinase-associated HPRT gene exon 2–3 deletions in cord blood T-lymphocytes in newborns of actively smoking mothers relative to unexposed mothers (P=0.011). Together, these results add to growing molecular evidence that in utero exposures to genotoxicants result in detectable transplacental mutagenic effects in human newborns.  相似文献   

6.
The clonal assay was used to measure frequencies of 6-thioguanine-resistant (HPRT) T-lymphocytes in 111 donors from the following 5 control populations: 55 adult healthy volunteers; 20 untreated cancer patients; 8 healthy hospital workers serving as controls for 9 hospital workers sterilizing equipment with ethylene oxide; 15 factory workers serving as controls for 15 workers occupationally exposed to high doses of ethylene oxide; 13 pretreatment samples from donors undergoing a diagnostic test with Technetium-99m for an analysis of heart function. With respect to mutant frequency (MF), cloning efficiency (CE) and age distribution, the first 4 populations were identical. The Technetium group had significantly higher MFs and lower CEs but this can be attributed to the higher mean age of this group. Using the total data base, we calculated the following relationships between MF, CE, age and smoking: (1) ln MF = 4.23-0.63 x ln CE indicating that a doubling of the CE has the effect of decreasing the MF by 37%, (2) ln MF = 0.71 + 0.03 x age meaning that the MF increases by 3% from one year to the next, (3) ln CE = 4.87-0.04 X age indicating that the CE decreases by 0.98% from one year to the next, (4) ln MF = 3.25-0.52 x ln CE + 0.02 X age being the equation quantifying the interrelationship between MF, CE and age, (5) ln MF = 3.32-0.56 x ln CE + 0.01 x age + 0.31 s (where s = 1 for smokers and s = 0 for nonsmokers). Using the latter equation, which allows for effects of CE and age on the MF, a statistically significant effect of smoking could be established. For any combination of CE and age smoking has the effect of increasing the MF by 36%. The above conclusions and calculations remain essentially the same when donors with cloning efficiencies lower than 10 or 20% are excluded from the data base.  相似文献   

7.
This paper describes the results of a study designed to assess the effects of a variety of dietary and lifestyle factors on background levels of mutant frequency (MF) at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene locus in humans. Eighty-three healthy and free-living subjects (aged 20–80 yr; 61 males and 22 females; mean age of 63.07±14.71 yr) were recruited. Background levels of MF were determined for each subject using a cloning assay. The mean MF/106 clonable cells (MF) for the study subjects was 4.63±2.20. An interview-administered questionnaire was completed by each study subject in order to assess details of dietary history, physical activity, health and potential genotoxin exposure history. A 7-day estimated dietary record method with a food frequency questionnaire was used to determine average intakes of energy and macronutrients (including alcohol), and a range of micronutrients (including vitamin and mineral supplement usage). The relationships between individual dietary and lifestyle factors and HPRT MF were investigated by univariate and multivariate analysis (data was adjusted for age, lymphocyte plating efficiency [PE] and energy intake [EI]). Univariate analysis revealed a significant positive correlation between EI and MF and multivariate analysis revealed significant positive correlations between, body mass index (BMI), % energy intake from total carbohydrate, starch, fat and MF. These findings suggest that a reduction in EI may be a useful preventative measure against the onset of carcinogenesis in humans. No correlations were found between alcohol intake and MF or between estimated antioxidant intake and MF. Thus, estimated intakes of antioxidants may not reflect their bioavailability and functional capacity in vivo and it may be more useful to examine actual plasma/cell levels vs. MF to establish if any significant relationship exists.  相似文献   

8.
In an attempt to understand the inter-individual variation that occurs in in vivo mutant frequency at the HPRT locus, we have examined the effect of polymorphisms in genes for metabolic enzymes on the mutation rate. In the same population of human volunteers, the background variant frequency in a number of microsatellite sequences was studied to determine individual variation in the capacity to repair mismatches in these sequences. The HPRT mutant frequency of T-cells isolated from a group of 49 healthy, non-smoking adults varied from 0.25 to 9.64×10−6. The frequency of polymorphisms in CYP1A1, GSTM1 and NAT2 among these individuals was similar to those published, and when subjected to univariate analysis these polymorphisms showed no influence on the HPRT mutant frequency. However, there was a significant interaction between the GSTM1 null genotype and the slow acetylator status in NAT2 (P<0.05) which was associated with higher mutant frequency. Analysis of 30 microsatellite sequences in 20 HPRT proficient clones per individual showed only six alterations in total, giving an overall mutation rate per allele of 0.01%, whilst three alterations were found in five HPRT deficient clones per individual examined for changes in 10 microsatellites, giving an overall mutation rate per allele of 0.3%. Thus, the alterations detected are probably due to background mutations and not to differences in mismatch repair capacity.  相似文献   

9.
In addition to reference measurement procedures and reference materials, reference or calibration laboratories play an integral role in the implementation of measurement traceability in routine laboratories. They provide results of measurements using higher-order methods, e.g. isotope dilution mass spectrometry and may assign values to materials to be used for external quality assessment programs and to secondary reference materials. The requirements for listing of laboratories that provide reference measurement services include a statement of the metrological level or principle of measurement, accreditation as a calibration laboratory according to ISO 15195 and the participation in a proficiency testing system (regular inter-laboratory comparisons) for reference laboratories. Ring trials are currently conducted for thirty well-defined measurands and the results are made available to all laboratories. Through the use of reference laboratory services that are listed by the Joint Committee for Traceability in Laboratory Medicine there is the opportunity to further promote traceability and standardisation of laboratory measurements.  相似文献   

10.
We used a direct polymerase chain reaction (PCR) method for quantification of HPRT exons 2+3 deletions and t(14;18) translocations as a measure of illegitimate V(D)J recombination. We determined the baseline frequencies of these two mutations in mononuclear leukocyte DNA from the umbilical cord blood of newborns and from the peripheral blood of adults. In an initial group of 21 newborns, no t(14;18) translocations were detected (<0.049×10−7). The frequency of HPRT exons 2+3 deletions was 0.10×10−7 per mononuclear leukocyte, lower than expected based on the T-cell proportion of this cell fraction (55%–70%) and previous results using the T-cell cloning assay (2–3×10−7 per clonable T-cell). Phytohemagglutinin (PHA), as used in the T-cell cloning assay, was examined for its effect on the frequencies of these mutation events in mononuclear leukocytes from an additional 11 newborns and from 12 adults. There was no significant effect of PHA on t(14;18) translocations which were rare among the newborns (1 detected among 2.7×108 leukocytes analyzed), and which occurred at frequencies from <1×10−7 (undetected) to 1.6×10−4 among the adults. The extremely high frequencies of t(14;18)-bearing cells in three adults were due mainly to in vivo expansion of two to six clones. However, PHA appeared to stimulate a modest (although not significant) increase in the frequency of HPRT exons 2+3 deletions in the leukocytes of the newborns, from 0.07×10−7 to 0.23×10−7. We show that both the direct PCR assay and the T-cell cloning assay detect similar frequencies of HPRT exons 2+3 deletions when calculations are normalized to blood volume, indicating that the apparent discrepancy is probably due to the different population of cells used in the assays. This direct PCR assay may have utility in characterizing the effects of environmental genotoxic agents on this clinically important recombination mechanism.  相似文献   

11.
Types and frequencies of in vivo mutation in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene was studied in 142 T cell mutants from 78 healthy nonsmoking and smoking adults with a mean of 65 years. The HPRT mutant frequency in the nonsmokers was 18.7±12.0×10−6, and in the smokers 26.6±18.5×10−6 (mean±S.D., P<0.01). Among 107 single base pair substitutions (SBS) in the coding region of the HPRT gene, one new mutable site, one novel nonsense mutation and three not previously reported SBS were identified. Transitions accounted for 59% of the SBS and transversions for 41%. GC>AT transitions were the predominant type of mutation, with 50% of all SBS. The mutations showed a nonrandom distribution along the coding sequence, with three significant hotspots at positions 143, 197 and 617 (13, 14 and 7 mutations, respectively). There was no difference between smokers and nonsmokers with regard to the distribution of mutations at these hotspot positions. However, 85% of the mutations at GC base pairs and 88% of the mutations at AT base pairs in smokers occurred at sites with guanine or thymine, respectively, in the nontranscribed DNA strand. Moreover, smokers had a higher frequency of transversions and lower frequency of transitions than nonsmokers did. Particularly, GC>TA transversions were increased in smokers (11%) compared to nonsmokers (2%), which suggests that tobacco-smoke induced adducts at guanine bases in the nontranscribed DNA strand contributes to the increase of HPRT mutation in smokers. Overall, these results were very similar to the mutational spectra in two younger study populations reported previously [K.J. Burkhart-Schultz, C.L. Thompson, I.M. Jones, Spectrum of somatic mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene of healthy people, Carcinogenesis 17 (1996) 1871–1883; A. Podlutsky, A.-M. Österholm, S.-M. Hou, A. Hofmaier, B. Lambert, Spectrum of point mutations in the coding region of the hypoxanthine-guanine phosphoribosyltransferase, Carcinogenesis 19 (1998) 557–566]. With the possible exception of an increase of mutations at hotspot position 143, and a decrease of 5-methylcytosine deamination mediated transitions at CpG-sites in the older individuals, there were no differences between the mutational spectra of old and young adults. In conclusion, both smoking and ageing seem to have minor influences on the spectrum of HPRT mutation in T cells.  相似文献   

12.
Dennog C  Gedik C  Wood S  Speit G 《Mutation research》1999,431(2):351-359
DNA damage induced by reactive oxygen species (ROS) seems to play an important role in the induction of mutations and cancer. We have recently shown that hyperbaric oxygen (HBO) treatment of volunteers (i.e., exposure to 100% oxygen at a pressure of 2.5 ATA) induces DNA damage detected in leukocytes with the comet assay. Using formamidopyrimidine-DNA glycosylase (FPG protein) we provided indirect evidence for the induction of oxidative DNA base damage. We now comparatively evaluated FPG-sensitive sites with the comet assay and 7,8-dihydro-8-oxo-deoxyguanosine (8-OHdG) with HPLC analysis after a single HBO. As 8-OHguanine (8-OHgua) is one of the major DNA modifications induced by ROS and a pre-mutagenic lesion, we looked for HBO-induced mutations at the HPRT locus with the T cell cloning test. We also determined the genotypes for glutathione transferases (GST) and tested a possible influence of the GSTM1 and GSTT1 genotypes on the sensitivity of subjects against HBO-induced genotoxicity. Our results indicate that despite a clear induction of FPG-sensitive sites no increased levels of 8-OHdG and no induction of HPRT mutations was detected in lymphocytes after HBO. Furthermore, the DNA effects in the comet assay and the mutant frequencies in the HPRT test seem to be unrelated to the GST genotypes of the test subjects.  相似文献   

13.
Biomarkers were measured in residents of Wilrijk and Hoboken, industrial suburbs of the city of Antwerp, and of Peer, a rural municipality in Flanders, Belgium. Persons with known occupational exposures to toxic compounds or commuting over long distances were excluded. Here, we report the hypoxanthine phosphoribosyltransferase gene (HPRT) variant frequencies for 99 non-smoking women aged 50-65 years. HPRT values above the detection limit (Vfpos values) were observed for 43 subjects (21 from Peer, 22 from Antwerp). The median (10th to 90th percentiles) HPRT variant frequency (Vfpos) in peripheral lymphocytes was 9.59 (3.44-56.99) for Peer and 3.57 (1.57-13.96) for Antwerp. The Vfpos value was significantly higher in Peer than in Antwerp, both in terms of crude data (p=0.011) and after correction for age, level of education, smoking status, serum level of selenium and body mass index through analysis of covariance (p=0.011). For the total study population, serum lead concentration showed a non-significant positive correlation with lnVfpos. In addition, subjects with a blood lead concentration above the median tended to have higher Vfpos values (9.45×10-6 for 'high' group versus 5.21×10-6 for 'low' group; p=0.077 after correction for confounding). Subjects with a serum selenium level above the median tended to have lower Vfpos values (4.99×10-6 for 'high' group versus 9.83×10-6 for 'low' group; p=0.051 after correction for confounding). These data are consistent with an indirect genotoxic effect of lead and with an antimutagenic effect of selenium.  相似文献   

14.
The HPRT mutations in T lymphocytes are widely utilized as biomarkers of environmental exposure and effect. The HPRT gene detects a wide variety of mutation types, many of which are similar at the molecular level to those found in oncogenes in cancers. However, it remains to be determined whether the assay for mutations in T lymphocytes is reflective of mutagenic events in tissues or cells which have high frequencies of malignancy in humans. We now demonstrate that the HPRT gene can be utilized to detect mutations in myeloid stem cells, which are frequent progenitor cells of leukemias. This myeloid stem cell assay shows an age related increase in mutation at HPRT and also detects increases in mutant frequency (M-MF) in patients who have undergone chemotherapy. The myeloid mutants are confirmed to have mutations in the HPRT gene by DNA sequence analysis. Increases in M-MF are seen as expected in the clonally unstable myeloid stem cells of patients with myelodysplastic syndromes; however, unexpectedly these patients also have elevated T-lymphocyte mutant frequencies (T-MF). A good correlation is shown between M-MFs and T-MFs in the same patients. Thus, it appears that the T-lymphocyte assay, which is technically much less demanding than the myeloid assay, appears to faithfully represent the frequency of mutagenic events in the myeloid lineage.  相似文献   

15.
16.
17.
T-cell activation by malignant melanoma would be anticipated to stimulate T-cell proliferation, which in turn has been associated with increasing the likelihood of somatic gene mutation. The purpose of this study was to test the hypothesis that in vivo hypoxanthine guanine phosphoribosyltransferase (hprt) mutant frequencies (MFs) are increased in peripheral blood T-cells from melanoma patients compared to normal controls. Assays were made of 48 peripheral blood samples from melanoma patients with stage 3 (13 patients) and stage 4 (35 patients) disease, 38 normal controls, and of nine tumor bearing lymph nodes. The mean hprt log(10)(MF) in patient peripheral blood was -4.77 (geometric mean hprt MF=17.0x10(-6)) compared to a mean hprt log(10)(MF) of -4.87 (geometric mean hprt MF=13.5x10(-6)) in controls. Although modest, this difference is statistically significant both by t-test (P=0.049) and after adjustment for covariates of age, gender, and cigarette smoking by regression analysis (P=0.001). Among the melanoma patients, the mean log(10)(MF) for the 17 patients who had received potentially genotoxic therapies was not significantly different from the mean log(10)(MF) for the 31 patients not receiving such therapies. The hprt MFs in the nine tumor bearing nodes were compared with MFs in peripheral blood from the same patients and revealed a non-significant (P=0.07) trend for increasing MFs in blood. Furthermore, analyses of T-cell receptor gene rearrangement patterns revealed hprt mutants originating from the same in vivo clone in both peripheral blood and a tumor-bearing node. The finding of elevated hprt MFs not entirely explained by genotoxic therapies in patients compared to controls can be explained either by hypermutability or in vivo T-cell activation. The similar MFs in peripheral blood and tumor bearing lymph nodes, as well as the finding of mutant representatives of the same in vivo T-cell clone in both locations, support monitoring peripheral blood to detect events in the nodes. If in vivo proliferation accounts for the current findings, the hprt deficient (hprt-) mutant fraction in blood may be enriched for T-cells that mediate the host immune response against malignant melanoma. Further studies will characterize the functional reactivity of hprt mutant isolates against melanoma-related antigens.  相似文献   

18.
We have determined both the spontaneous and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced mutational spectra in the HPRT gene of human cells (MT1) defective in the mismatch repair gene hMSH6 (GTBP). Eight of nine exons and nine of sixteen intronic flanking sequences were scanned, encompassing >900 bp of the HPRT gene. Mutant hotspots were detected and separated by differences in their melting temperatures using constant denaturant capillary electrophoresis (CDCE) or denaturing gradient gel electrophoresis (DGGE).

A key finding of this work is that a high proportion of all HPRT inactivating mutations is represented by a small number of hotspots distributed over the exons and mRNA splice sites. Thirteen spontaneous hotspots and sixteen MNNG-induced hotspots accounted for 55% and 48% of all 6TGR point mutations, respectively. MNNG-induced hotspots were predominantly G:C→A:T transitions. The spontaneous spectrum of cells deficient in hMSH6 contained transversions (A:T→T:A, G:C→T:A, A:T→C:G), transitions (A:T→G:C), a plus-one insertion, and a minus-one deletion. Curiously, G:C→A:T transitions, which dominate human germinal and somatic point mutations were absent from the spontaneous hMSH6 spectra.  相似文献   


19.
The effect of magnetic field (MF) exposure on microcirculation and microvasculature is not clear or widely explored. In the limited body of data that exists, there are contradictions as to the effects of MFs on blood perfusion and pressure. Approximately half of the cited studies indicate a vasodilatory effect of MFs; the remaining half indicate that MFs could trigger either vasodilation or vasoconstriction depending on initial vessel tone. Few studies indicate that MFs cause a decrease in perfusion or no effect. There is a further lack of investigation into the cellular effects of MFs on microcirculation and microvasculature. The role of nitric oxide (NO) in mediating microcirculatory MF effects has been minimally explored and results are mixed, with four studies supporting an increase in NO activity, one supporting a biphasic effect, and five indicating no effect. MF effects on angiogenesis are also reported: seven studies supporting an increase and two a decrease. Possible reasons for these contradictions are explored. This review also considers the effects of magnetic resonance imaging (MRI) and anesthetics on microcirculation. Recommendations for future work include studies aimed at the cellular/mechanistic level, studies involving perfusion measurements both during and post-exposure, studies testing the effect of MFs on anesthetics, and investigation into the microcirculatory effects of MRI.  相似文献   

20.
Wang J  Heflich RH  Moore MM 《Mutation research》2007,626(1-2):185-190
The mouse lymphoma assay (MLA) is the most widely used in vitro mammalian gene mutation assay. It detects various mutation events involving the thymidine kinase (Tk) gene in L5178Y/Tk+/- -3.7.2C mouse lymphoma cells. Mutants are detected using a thymidine analogue that arrests the growth of cells containing a functional Tk gene. However, there are a number of potential test chemicals that are thymidine analogues, and there is a problem when using the MLA to evaluate the mutagenicity of these chemicals. Thymidine analogues are activated by Tk before eliciting their toxicity. Therefore, any pre-existing Tk-/- mutants may avoid the toxicity of the test chemical and obtain a growth advantage over the Tk+/- cells, increasing the Tk mutant frequency (MF) in the culture via a selection mechanism. This potential mutant selection effect needs to be distinguished from de novo mutant induction in order to properly evaluate the mutagenicity of these chemicals. Here we describe a simple MLA study design that can differentiate between the selection of pre-existing mutants and de novo mutant induction. Trifluorothymidine (TFT), a thymidine analogue and the selection agent normally used in the MLA, and 4-nitroquinoline-1-oxide (4-NQO), a potent mutagen, were used to treat cells from two different Tk+/- mouse lymphoma cell cultures with different background MFs (approximately 112 and 305x10(-6)). Both agents significantly increased the Tk MFs in both the normal and high background cultures (p<0.01). In 4-NQO-treated cultures, the induced MFs (MF of treated culture-MF of control) for the cultures with different background MFs were about the same (p>0.1), while in TFT-treated cultures, they were significantly different (p<0.01). In TFT-treated cultures, the fold-increases of MF (MF of treated culture/MF of control) for the cultures with different background MFs were about the same (p>0.1), while in 4-NQO-treated cultures, they were significantly different (p<0.01). This study confirms that, when de novo mutations are induced, the induced MF is the same for cultures with normal and artificially high background MFs. In situations where the increase in MF is due solely to selection of pre-existing mutants, the "induced" MF will be a multiple of the background MF and the magnitude of the increase of the induced MF will depend upon the magnitude of the background MF. Our results demonstrate that it is possible, using this experimental design, to distinguish between chemicals acting primarily via the selection of pre-existing Tk mutants and those inducing de novo mutants in the MLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号