首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercooling point studies were used to investigate the factors influencing the cold hardiness of the peach-potato aphid Myzus persicae, a freezing-susceptible insect. Overwintering adults lost cold hardiness as winter progressed, with a variable proportion showing a marked reduction in supercooling ability. Cold hardiness increased in spring so that all individuals demonstrated extensive supercooling ability typical of aphids reared in the laboratory at 20°C with a long photoperiod; these levels of cold hardiness were maintained in the field during summer and early autumn. First instar nymphs demonstrated considerable cold hardiness all year. Surface moisture caused inoculative freezing in some first instar nymphs and adults when supercooled, but the majority were unaffected. In the laboratory, adults starved for 7 days at 5°C showed distinct losses of supercooling potential equivalent to those observed in the field during mid to late winter. No loss of cold hardiness was found in first instar nymphs starved under the same conditions. The results demonstrate that the cold hardiness characteristics of M. persicae are atypical of those observed in other freezing-susceptible insects and it is suggested that continued feeding during mild winter conditions allows maintenance of cold hardiness particularly in adult aphids, and provides a possible explanation for the successful anholocyclic overwintering of M. persicae during such winters.  相似文献   

2.
The LT50 (lethal temperature) of first instar and adult stages of the peach-potato aphid Myzus persicae was lowered following long term acclimation at low temperatures.
First instars consistently showed greater cold hardiness than adult stages at each acclimation temperature, with the differential increasing as the temperature was lowered. When maintained at 5°C (the lowest acclimation regime) nymphs and adults had dLT508.3°C and 4.7°C respectively lower than those for non-acclimated individuals.
When 10°C acclimated adults were returned to 20°C, the acclimation effect was retained in full for 6 days but complete deacclimation occurred by day 10. In contrast the LT50 of their progeny increased gradually from the first day of adult deacclimation towards the level of the unacclimated control over a period of 10 days.
A change in cold hardiness was observed in first instars according to their position in the birth sequence. The LT50 of first-born nymphs (day 1 of reproduction) from 20°C parents was - 15.9°C rising to - 8.3°C by day 4 and remaining at this level until the end of the reproductive period.
The differential mortality between nymphs and adults observed in the laboratory was supported by the results of a field experiment. Adult aphids kept in clip-cages on a crop of oilseed rape showed greater mortality compared with those introduced as nymphs when the minimum temperature fell below -4°C for the first time in winter. At - 10°C mortality of aphids introduced as adults approached 100% whereas more than 50% of those introduced as nymphs were still alive at this temperature.  相似文献   

3.
Summary The Antarctic winged midge Parochlus steinenii (Diptera:Chironomidae) and its immatures were collected from freshwater lakes near Great Wall Station (62°13S,58°58W) on King George Island during January and February in 1990. They were examined for supercooling ability and lower lethal temperature. They were all intolerant to freezing. Supercooling points (spontaneous freezing points) of the larvae, pupae and adults were -7.4° ±1.0°, -16.3°±4.6° and -15.3°±5.6°C, respectively. These values represented the potential limits of cold-hardiness of this species. But the median lower lethal temperatures examined under an aqueous condition were always higher than the corresponding mean supercooling points. Half of the larvae, pupae and adults in the aqueous condition were killed at about -3°, -9° and -7°C, respectively, probably due to inoculative freezing. These temperatures seemed to be the natural lower limits of survival in the immatures and some adults of this species, at least in the active season.  相似文献   

4.
The cold-hardening capacity of field-collected larvae from southeast Missouri and laboratory-reared larvae of the southwestern corn borer, Diatraea grandiosella Dyar, was examined. Supercooling points of non-diapause and diapause larvae collected from maize plants grown in Missouri (36°30 N lat.) were ca.-7.0°C. The hemolymph melting points of diapause field larvae (-0.8°C) were significantly lower than those of non-diapause larvae collected in July (-0.5°C). The supercooling points of hemolymph from non-diapause and diapause field larvae ranged randomly from-10° to-18°C. Supercooling points of non-diapause laboratory larvae increased from-13° to-10°C prior to pupation, whereas those of diapause larvae increased similarly before the onset of diapause, but then decreased during diapause to ca.-17°C. No change in supercooling points or capacity to survive in the presence of ice was observed in diapause laboratory larvae acclimated at 4°C for 63 days. Laboratory and field larvae began to freeze at ca.-1.5°C in the presence of ice, but survived to several degrees below their melting points. The high supercooling points of field larvae appeared to be due to the presence of an environmental ice-nucleator. Although data for laboratory larvae indicate sufficiently low supercooling points to permit winter survival in southeastern Missouri, considerable larval mortality occurs in the field due to inoculative freezing and the presence of an ice-nucleator.  相似文献   

5.
Abstract.  Even though overwintering larvae of the rice stem borer, Chilo suppressalis , are freeze-tolerant, they cannot survive below −30 °C. Furthermore, nondiapausing larvae cannot survive freezing. However, the cause of death due to freezing is unclear. To identify the cause of death by freezing in larvae, those tissues most injured by low temperatures are identified using the vital stain trypan blue. In overwintering larvae, the midgut of dead larvae stains blue, and remarkable colour density differences between dead and surviving larvae are observed in the midgut. In nondiapausing larvae incubated at −10 °C for several hours, the fat body of dead larvae is strongly stained. Furthermore, increases in mortality with treatment time correspond with increases in the area of the fat body stained. Sterile nondiapausing larvae with lower supercooling points, below −20 °C, do not freeze at −10 °C and survive the treatment. However, all the larvae die when subjected to inoculative freezing at −10 °C, and the fat body stains blue. These results suggest that the midgut in overwintering larvae and the fat body in nondiapausing larvae have the lowest tolerance to freezing.  相似文献   

6.
Supercooling points and the presence of antifreeze compounds were measured for both nymphs and adults of Steganacarus magnus (Nicolet) collected from a coniferous forest soil in southern England in March, June and November. The mean supercooling point of nymphs was –14.4°C and of adults, –11.7°C. Acclimation to low temperatures (1–2°C) did not alter these values significantly. The total concentration of antifreeze compounds in the nymphs was 4.46 g mg-1 and in the adults 0.91 g mg-1. These results are compared with similar data for other species of cryptostigmatic mites.  相似文献   

7.
桉树枝瘿姬小蜂的耐寒性测定   总被引:1,自引:1,他引:1  
桉树枝瘿姬小蜂Leptocybe invasa Fisher&LaSalle是一种新入侵的检疫性有害生物,为了明确其对极端低温的耐受性,以了解其适生范围,测定了桉树枝瘿姬小蜂幼虫、蛹、成虫及不同地区、不同寄主条件下雌雄成虫以及广东、广西、海南3省6地越冬幼虫12—3月的过冷却点和冰点。结果表明,不同虫态的过冷却点和冰点由低到高顺序为:蛹<幼虫<成虫。蛹的过冷却点和冰点分别为(-24.93±0.10)℃、(-22.81±0.14)℃,成虫的过冷却点和冰点为(-20.93±0.24)℃和(-17.33±0.27)℃。随着纬度的升高,桉树枝瘿姬小蜂的过冷却点和冰点都呈现降低的趋势。海南地区不同寄主桉树枝瘿姬小蜂过冷却点从低到高的顺序排列为:湛-201<小叶桉<广林9号。在12—3月,桉树枝瘿姬小蜂的越冬幼虫过冷却点和冰点随着环境温度的升高而升高,以广东广州地区1月份的越冬幼虫过冷却点和冰点为最低,其数值分别为(-25.44±0.17)℃和(-24.04±0.21)℃,个体过冷却点的最低值为-26.9℃。由实验结果可知,桉树枝瘿姬小蜂蛹和幼虫的耐寒力最强,以幼虫和蛹越冬。地区、寄主、温度对其耐寒力均有显著的影响,而且其有向现疫区以北的区域扩散的潜能。  相似文献   

8.
Summary The Antarctic oribatid mite Alaskozetes antarcticus was collected from several field habitats near Great Wall Station (62°13S, 58°58W) on King George Island during January and February 1990. The tritonymphs and adults were examined for their supercooling ability and survival at subzero temperatures in relation to inoculative freezing. The active tritonymphs and adults showed a wide range of supercooling points probably due to their polyphagous feeding activity and humid habitat conditions, with means ranging from -3.8° to -22.4°C. Detrivores were inferior to algivores in their supercooling ability. The former seemed to be transiently exposed to the hazard of freezing during the cool Antarctic summer. The resting (premoulting) tritonymphs exhibited the lowest mean supercooling point of -28.3°C. Inoculative freezing reduced the survival of A. antarcticus. Its effect became conspicuous at temperatures below -20°C and was serious in the deeply supercooled individuals, such as resting tritonymphs and algivorous adults. During the active season, spontaneous freezing probably started from the gut contents seemed to be more fatal than inoculative freezing for this freeze intolerant species.  相似文献   

9.
10.
Seasonal supercooling points (SCPs=temperature of crystallization) and cold hardiness were investigated in the indigenous hard tick, I. ricinus, and in A. reflexus, a soft tick introduced to Central Europe from the South. Both species proved to be freeze-susceptible as well as highly susceptible to inoculative freezing. None of the postembryonic developmental stages of either species showed any distinct seasonal pattern of SCP. Unexpectedly, the introduced A. reflexus exhibited a distinctly higher degree of cold hardiness in terms of lower lethal temperature (LT(50): 24h exposure) as well as lethal time (T(50): time of survival at -10.1 degrees C) than I. ricinus. Engorged I. ricinus larvae as well as engorged summer acclimatized A. reflexus larvae showed some mortality at temperatures well above the SCP. This mortality was generally expressed as a failure of the following stage to eclose properly. A 10-day cold acclimation at +3 degrees C eliminated that kind of mortality in summer acclimatized A. reflexus larvae, but not in I. ricinus larvae. It was frequently observed that freezing of ticks resulted-possibly via leakage from the midgut-in a subsequent reddish brown discoloration of the ticks after thawing. Taking into account that discoloration was an indication of previous freezing, it was concluded, that after long-term exposure (for >/=30 days) at -10.1 degrees C, a temperature well above the SCP, some tick mortality could be observed that was not caused by previous freezing. Weighing experiments clearly demonstrated, that the level of dehydration was not critical for survival of A. reflexus during long-term cold exposure, even at low RH. This indicates, that cold-related factors other than freezing and dehydration were detrimental to this species.  相似文献   

11.
1. The cold hardiness of the alpine cockroach Celatoblatta quinquemaculata was investigated. This species is found at 1360 m a.s.l. beneath schist slabs on the Rock and Pillar Range (Central Otago, New Zealand). Cockroaches were collected monthly from January to December 1996, and their LT50 and supercooling points determined.
2. Celatoblatta quinquemaculata was freezing tolerant throughout the year, with a lower lethal temperature in winter of – 8.9 °C. Celatoblatta quinquemaculata was also found frozen under rocks in the field when the under-rock temperature was below – 3 °C, and could survive being frozen at – 5 °C for 4 days in the laboratory.
3. There was a marked decrease in LT50 temperature from – 5.5 °C in April to – 7.5 °C in May. This coincides with decreasing temperatures from summer through autumn to winter, during which temperatures beneath snow-covered rocks may reach – 7.3 °C.
4. Supercooling points fluctuated during the year, with an increase from – 4.2 °C in autumn to – 3.4 °C in winter. Supercooling point was highest in spring, and changes in supercooling point do not appear to be related to changes in LT50.
5. Recordings of environmental temperatures from the Rock and Pillar Range suggest that cockroaches may undergo up to twenty-three freeze–thaw cycles in the coldest month of the year, and that they may remain frozen for periods of up to 21 h. Maximum cooling rates recorded in the field (0.01 °C min–1) were 100-fold slower than laboratory cooling rates, so survival estimates from laboratory experiments may be underestimates.  相似文献   

12.
Peter Convey 《Ecography》1994,17(1):97-107
Growth and mortality rates of three juvenile instars and adults of the oribatid mite Alaskozetes antarcticus were measured over a twelve month period using field enclosures m Its maritime Antarctic habitat A pattern was found of rapid growth during the short summer period (0 2-0 4 μg dry weight increment per day) followed by gradual weight loss overwinter Most individuals completed one instar per year, reaching a premoult resting phase by late summer, with the moult being delayed and relatively synchronised early the next summer A small proportion of proto- and deutonymphs completed two moults within one summer period After the final moult adults overwintered again before commencing oviposition, suggesting that the life cycle (egg-egg) will take at least five years Mortality was not biased towards any instar or time of year Highest individual growth rates were obtained at a constant temperature of 7°C in the laboratory However expenmentai increase of mean field temperature from 2 7 to 4 3°C by use of a plastic cloche led to decreased growth, although no change in moulting frequency or mortality rate Laboratory survival was greatest at 2°C and decreased with increasing temperature
Alaskozetes antarcticus may be descnbed as 'a' (adversity) selected, showing an exceptionally long life cycle of five to six years and extensive physiological investment in survival adaptations Moult synchronisation in early summer, involving entering winter in the inactive premoult phase, will increase overwinter survival by reducing the chance of inoculative freezing from gut contents, and may be advantageous in maximising the time available for feeding during the subsequent summer, or ensuring proximity of the sexes after the final moult  相似文献   

13.
Nesidiocoris tenuis Reuter (Hemiptera: Miridae) is a polyphagous mirid currently used for the control of leafminers, thrips, whitefly and spider mites in Mediterranean regions to which it is indigenous. This study investigates the establishment potential of N. tenuis in cool temperate climates typical of northern Europe through assessment of its thermal biology and low temperature tolerance in laboratory and field experiments. The developmental threshold of N. tenuis was estimated to be 12.9°C with no indication of ability to diapause. Supercooling points of the acclimated and non-acclimated adults and nymphs of the mirid were between −17.6° and −21.5°C and the LTemp50 was around −12°C, indicating a high level of pre-freeze mortality. The LTime50 at 5°C was nine days and 100% mortality occurred after less than four weeks of winter field exposure. Collectively these data suggest that N. tenuis is unlikely to establish in northern Europe and would therefore have little or no non-target effects on native species in such regions.  相似文献   

14.
Abstract Cold hardiness was investigated in overwintering field nests of the black carpenter ant Camponotus pennsylvanicus (De Geer) in the Commonwealth of Virginia. No active nest thermoregulation was observed: temperatures of galleries, worker bodies, worker clusters, and larval clusters were within 3°C of ambient temperature. Nest temperatures generally fluctuated less rapidly and severely than did ambient temperature; thus, the nest afforded protection from potentially fatal sudden temperature drops. Glycerol, the only polyol cryoprotectant detected, was found in all castes and larvae. Supercooling points were low and ranged from ? 17°C in major workers to ?22°C in larvae. A second heat release peak, occurring around ? 8°C, was seen in all adults, but it was not observed in larvae. This higher temperature peak in adults probably represents the freezing of the gut contents, as adults were found to overwinter with the crop full or partially full. Larvae did not overwinter with liquid food in the gut.  相似文献   

15.
Abstract The prey consumption of ovipositing female adults of the ladybeetle Chilocorus kuwanae on the scale Unaspis yanonensis was found to be significantly greater than that of the male adults. At 25°C one female adult ladybeetle, on average, would consume 42. 7 female scale adult per day while one male adult only destroyed 22. 3 female scale adults. However, after a deprivation of the prey for 48 h, this difference was eliminated. A C. kuwanae female adult had to prey on at least 15 U. vanonensis female adults in order to lay eggs. The funcional responses of the beetle adults to densities of different stages of the scale followed Holling's type 1. The functional responses to female scale adults indicated that the maximum prey consumption went up with the increase in temperature from 16°C to 35°C, and dropped sharply at 37°C. However, temperature did not alter the type of the functional response. Rased on the predation of C. kuwanae adults on U. yanonensis female adults, the minimum critical, optimal and maximum critical temperatures for their attack were estimated to be 10. 6°C, 31. 5°C and 38. 2°C respectively. The increase in predation space or in predator density could result in a reduction in the attack rat-e, but with the increase of predator density, the effect of predation space became much smaller. C. kuwanae adults preferred male pupae to other stages of the scale, and their preference for various stages of the prey was in the order of male pupae, 2nd-instar male nymphs, 2nd-instar female nymphs, adult females and kinstar nymphs.  相似文献   

16.
17.
18.
Immature and adult ixodid ticks were collected during 1983 and 1984 in Newtown, Connecticut, an area endemic for Rocky Mountain spotted fever (RMSF), to determine prevalence of infection by spotted fever group (SFG) rickettsiae. Direct fluorescent-antibody (FA) staining revealed SFG organisms in 6 (1.8%) of 332 Dermacentor variabilis larvae, 5 (7.8%) of 64 D. variabilis nymphs, and in 2 (40%) of 5 Ixodes cookei nymphs removed from small- and medium-sized mammals. Hemolymph tests detected rickettsia-like organisms in 15 (8.8%) of 170 D. variabilis adults; 8 specimens retested by direct FA were negative. In contrast, hemocytes from 5 (8.6%) of 58 Ixodes texanus females contained organisms that stained positively in both hemolymph and direct FA tests. An indirect microimmunofluorescence test identified specific antibodies to Rickettsia rickettsii, the etiologic agent of RMSF, in serum samples from a chipmunk, raccoons, and white-footed mice. Results indicate that immature or adult ticks of at least three species may be involved in the maintenance and transmission of SFG rickettsiae at Newtown.  相似文献   

19.
Freezing avoidance in Andean giant rosette plants   总被引:3,自引:1,他引:2  
Abstract Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around - 5°C coinciding with the injury temperature. Supercooling points of about –13 to - 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.  相似文献   

20.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号