首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation to novel environments arises either from new beneficial mutations or by utilizing pre‐existing genetic variation. When standing variation is used as the source of new adaptation, fitness effects of alleles may be altered through an environmental change. Alternatively, changes in epistatic genetic backgrounds may convert formerly neutral mutations into beneficial alleles in the new genetic background. By extending the coalescent theory to describe the genealogical histories of two interacting loci, I here investigated the hitchhiking effect of epistatic selection on the amount and pattern of sequence diversity at the linked neutral regions. Assuming a specific form of epistasis between two new mutations that are independently neutral, but together form a coadapted haplotype, I demonstrate that the footprints of epistatic selection differ markedly between the interacting loci depending on the order and relative timing of the two mutational events, even though both mutations are equally essential for the formation of an adaptive gene combination. Our results imply that even when neutrality tests could detect just a single instance of adaptive substitution, there may, in fact, be numerous other hidden mutations that are left undetected, but still play indispensable roles in the evolution of a new adaptation. We expect that the integration of the coalescent framework into the general theory of polygenic inheritance would clarify the connection between factors driving phenotypic evolution and their consequences on underlying DNA sequence changes, which should further illuminate the evolutionary foundation of coadapted systems.  相似文献   

2.
The fitness of an individual can be simply defined as the number of its offspring in the next generation. However, it is not well understood how selection on the phenotype determines fitness. In accordance with Fisher's fundamental theorem, fitness should have no or very little genetic variance, whereas empirical data suggest that is not the case. To bridge these knowledge gaps, we follow Fisher's geometrical model and assume that fitness is determined by multivariate stabilizing selection toward an optimum that may vary among generations. We assume random mating, free recombination, additive genes, and uncorrelated stabilizing selection and mutational effects on traits. In a constant environment, we find that genetic variance in fitness under mutation-selection balance is a U-shaped function of the number of traits (i.e., of the so-called "organismal complexity"). Because the variance can be high if the organism is of either low or high complexity, this suggests that complexity has little direct costs. Under a temporally varying optimum, genetic variance increases relative to a constant optimum and increasingly so when the mutation rate is small. Therefore, mutation and changing environment together can maintain high genetic variance. These results therefore lend support to Fisher's geometric model of a fitness landscape.  相似文献   

3.
Gu X 《Genetica》2007,130(1):93-97
In this study, I take a new approach to modeling the evolutionary constraint of protein sequence, introducing the stabilizing selection of protein function into the nearly-neutral theory. In other words, protein function under stabilizing selection generates the evolutionary conservation at the sequence level. With the help of random mutational effects of nucleotides on protein function, I have derived the distribution of selection coefficient among sites, called the S-distribution whose parameters have clear biological interpretations. Moreover, I have studied the inverse relationship between the evolutionary rate and the effective population size, showing that the number of molecular phenotypes of protein function, i.e., independent components in the fitness of the organism, may play a key role for the molecular clock under the nearly-neutral theory. These results are helpful for having a better understanding of the underlying evolutionary mechanism of protein sequences, as well as human disease-related mutations.  相似文献   

4.
Despite the potential for rapid evolution, stasis is commonly observed over geological timescales—the so‐called “paradox of stasis.” This paradox would be resolved if stabilizing selection were common, but stabilizing selection is infrequently detected in natural populations. We hypothesize a simple solution to this apparent disconnect: stabilizing selection is hard to detect empirically once populations have adapted to a fitness peak. To test this hypothesis, we developed an individual‐based model of a population evolving under an invariant stabilizing fitness function. Stabilizing selection on the population was infrequently detected in an “empirical” sampling protocol, because (1) trait variation was low relative to the fitness peak breadth; (2) nonselective deaths masked selection; (3) populations wandered around the fitness peak; and (4) sample sizes were typically too small. Moreover, the addition of negative frequency‐dependent selection further hindered detection by flattening or even dimpling the fitness peak, a phenomenon we term “squashed stabilizing selection.” Our model demonstrates that stabilizing selection provides a plausible resolution to the paradox of stasis despite its infrequent detection in nature. The key reason is that selection “erases its traces”: once populations have adapted to a fitness peak, they are no longer expected to exhibit detectable stabilizing selection.  相似文献   

5.
Developmental instability shown by increased fluctuating asymmetry can be caused by either genetic or environmental stress. Genomic coadaptation and heterozygosity are the genetic factors that are commonly assumed to increase the level of developmental stability. Therefore, in hybrid populations the level of fluctuating asymmetry (FA) can be lower due to higher heterozygosity or higher due to disruption of coadapted gene complexes, depending on the degree of divergence between hybridizing taxa. Here I present data on FA in petals from hybrids between Lychnis viscaria (Caryophyllaceae) and Lychnis alpina and from parental species grown in a common garden environment. Petal asymmetry of hybrids was clearly higher than that of either parental species grown in common environment. Between the two parental species petal asymmetry did not differ. The mean size of the petals in hybrids was about the same as in L. viscaria, thus indicating no heterotic effect. Therefore, it seems that hybrids between L. viscaria and L. alpina do suffer from the disruption of coadapted gene complexes as indicated by higher developmental instability.  相似文献   

6.
Haag ES 《Genetica》2007,129(1):45-55
The evolution of molecules, developmental circuits, and new species are all characterized by the accumulation of incompatibilities between ancestors and descendants. When specific interactions between components are necessary at any of these levels, this requires compensatory coevolution. Theoretical treatments of compensatory evolution that only consider the endpoints predict that it should be rare because intermediate states are deleterious. However, empirical data suggest that compensatory evolution is common at all levels of molecular interaction. A general solution to this paradox is provided by plausible neutral or nearly neutral intermediates that possess informational redundancy. These intermediates provide an evolutionary path between coadapted allelic combinations. Although they allow incompatible end points to evolve, at no point was a deleterious mutation ever in need of compensation. As a result, what appears to be compensatory evolution may often actually be “pseudocompensatory.” Both theoretical and empirical studies indicate that pseudocompensation can speed the evolution of intergenic incompatibility, especially when driven by adaptation. However, under strong stabilizing selection the rate of pseudocompensatory evolution is still significant. Important examples of this process at work discussed here include the evolution of rRNA secondary structures, intra- and inter-protein interactions, and developmental genetic pathways. Future empirical work in this area should focus on comparing the details of intra- and intergenic interactions in closely related organisms.  相似文献   

7.
Parasites present a threat for free‐living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade‐offs between immune function and life‐history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade‐offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.  相似文献   

8.
We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates (“dragonflies and damselflies”). Fossil evidence for “Cope's Rule” in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life‐stage. This lack of stabilizing selection during the adult life‐stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group.  相似文献   

9.
Domesticated species continually escaping and interbreeding with wild relatives impose a migration load on wild populations. As domesticated stocks become increasingly different as a result of artificial and natural selection in captivity, fitness of escapees in the wild is expected to decline, reducing the effective rate of migration into wild populations. Recent theory suggest that this may alleviate and eventually eliminate the resulting migration load. I develop a multivariate model of trait and wild fitness evolution resulting from the joint effects of artificial and natural selection in the captive environment. Initially, the evolutionary trajectory is dominated by the effects of artificial selection causing a fast initial decline in fitness of escapees in the wild. In later phases, through the counteracting effects of correlational multivariate natural selection in captivity, the mean phenotype is pushed in directions of weak stabilizing selection, allowing a sustained response in the trait subject to artificial selection. Provided that there is some alignment between the adaptive landscapes in the wild and in captivity, these phases are associated with slower rates of decline in wild fitness of the domesticated stock, suggesting that detrimental effects on wild populations are likely to remain a concern in the foreseeable future.  相似文献   

10.
CRESSWELL  J. E. 《Annals of botany》1998,81(4):463-473
Zoophilous flowers often appear to be precisely formed for pollentransfer and exhibit relatively little variability in structurewithin species. Functional optimization by the seemingly exactingrequirements of pollen transfer may account for these observations.I used the results of a literature survey to examine the levelsof intraspecific variation in flowers across a wide range oftaxa. The least variable attributes were those potentially affectingthe mechanical fit between flower and pollinator, which arepotentially constrained by selection for pollination performance.I discuss six mechanisms by which plant-pollinator interactionscould generate stabilizing selection on flowers. In addition,I consider the stabilizing roles of limiting resources and alsotwo functionally-neutral mechanisms. Further work is requiredto identify the actual mechanisms by which selection stabilizesthe evolution of flowers.Copyright 1998 Annals of Botany Company stabilizing selection, flowers, pollination, variation  相似文献   

11.
The relationship between pleiotropy and the rate of evolution of a phenotypic character (evolvability) in a population is explored using computer simulations. I present results that suggest the rate of evolution of a phenotypic character may not decline when that character is pleiotropically associated to an increasing number of other characters, provided that the characters are under pure directional selection such that they are far from their optima relative to the average magnitude of a mutation. These conditions may be relevant during adaptive radiations. Adding pleiotropic associations to a set of characters in which one is under directional selection and the other is under stabilizing selection increases the rate of adaptation of the character under directional selection provided that the new characters that come to be pleiotropically associated are under directional selection. Thus, increasing the number of pleiotropic associations under these conditions increases the rate of adaptation of a character.  相似文献   

12.
Empirical studies show that lineages typically exhibit long periods of evolutionary stasis and that relative levels of within‐species trait covariance often correlate with the extent of between‐species trait divergence. These observations have been interpreted by some as evidence of genetic constraints persisting for long periods of time. However, an alternative explanation is that both intra‐ and interspecific variation are shaped by the features of the adaptive landscape (e.g., stabilizing selection). Employing a genus of insects that are diverse with respect to a suite of secondary sex traits, we related data describing nonlinear phenotypic (sexual) selection to intraspecific trait covariances and macroevolutionary divergence. We found support for two key predictions (1) that intraspecific trait covariation would be aligned with stabilizing selection and (2) that there would be restricted macroevolutionary divergence in the direction of stabilizing selection. The observed alignment of all three matrices offers a point of caution in interpreting standing variability as metrics of evolutionary constraint. Our results also illustrate the power of sexual selection for determining variation observed at both short and long timescales and account for the apparently slow evolution of some secondary sex characters in this lineage.  相似文献   

13.
Phenotypic integration is essential to the understanding of organismal evolution as a whole. In this study, a phylogenetic framework is used to assess phenotypic integration among the floral parts of a group of Neotropical lianas. Flowers consist of plant reproductive organs (carpels and stamens), usually surrounded by attractive whorls (petals and sepals). Thus, flower parts might be involved in different functions and developmental constraints, leading to conflicting selective forces. We found that Bignonieae flowers have very similar patterns of variance/covariance among traits and that such patterns are uncorrelated with the phylogenetic relationships between species. However, in spite of pattern stasis, our results also indicate that diversification of floral morphology in this group has occurred throughout the evolution of magnitudes of correlation among traits. Thus, we suggest that stabilizing selection has played an important role in phenotypic integration, resulting in the long‐term stasis of covariance patterns underlying flower diversification during the ca. 50 Myr of evolution of Bignonieae. This is the first report of long‐term stasis in the phenotypic integration of angiosperms, suggesting that patterns of floral morphology can be recognizable as specific attributes of distinct botanical families.  相似文献   

14.
Studies measuring natural selection acting via different components of fitness may provide insight into such central questions in evolutionary biology as the evolution of life histories and sexual dimorphism. It is often desirable to combine estimates of selection at different episodes to understand how they interact to produce total lifetime selection. When selective episodes are sequential, total directional selection may be calculated by summing directional selection across episodes. However, it is unclear whether lifetime nonlinear (e.g., stabilizing, disruptive, or correlational) selection may be similarly calculated using estimates of quadratic selection from sequential episodes. Here, I show that lifetime quadratic selection depends not only upon the sum total of quadratic selection across episodes but also upon the pattern of directional selection across episodes. In certain cases, the effects of directional selection across episodes may cancel one another, leading to no net directional selection but strong stabilizing selection. This result suggests that true stabilizing selection may be more common than previously thought, especially when the entire life cycle is considered. The equations derived here are easily applicable to empirical data, as is illustrated both with a simulated dataset and with a reanalysis of a study of quadratic selection in dark‐eyed juncos.  相似文献   

15.
Diversification on an ecologically constrained adaptive landscape   总被引:3,自引:2,他引:1  
We used phylogenetic analysis of body-size ecomorphs in a crustacean species complex to gain insight into how spatial complexity of ecological processes generates and maintains biological diversity. Studies of geographically widespread species of Hyalella amphipods show that phenotypic evolution is tightly constrained in a manner consistent with adaptive responses to alternative predation regimes. A molecular phylogeny indicates that evolution of Hyalella ecomorphs is characterized by parallel evolution and by phenotypic stasis despite substantial levels of underlying molecular change. The phylogeny suggests that species diversification sometimes occurs by niche shifts, and sometimes occurs without a change in niche. Moreover, diversification in the Hyalella ecomorphs has involved the repeated evolution of similar phenotypic forms that exist in similar ecological settings, a hallmark of adaptive evolution. The evolutionary stasis observed in clades separated by substantial genetic divergence, but existing in similar habitats, is also suggestive of stabilizing natural selection acting to constrain phenotypic evolution within narrow bounds. We interpret the observed decoupling of genetic and phenotypic diversification in terms of adaptive radiation on an ecologically constrained adaptive landscape, and suggest that ecological constraints, perhaps acting together with genetic and functional constraints, may explain the parallel evolution and evolutionary stasis inferred by the phylogeny.  相似文献   

16.
Variation in morphological traits is generally thought to be cogradient, with environmental effects on phenotypic expression reinforcing genetic differences between populations. We compared body shape between two populations of Atlantic cod (Gadus morhua). Striking shape differences occurred between juveniles from the two populations when reared in a common laboratory environment. However, no difference in body shape occurred between wild-reared juveniles from the two populations, suggesting that the genetic differences between populations were obscured by opposing effects of the environmental differences experienced in the wild. We suggest that much of the genetic diversity in body shape of fishes may be cryptic, with stabilizing selection for the same optimal phenotype resulting in genetic divergence between populations subject to contrasting environmental influences.  相似文献   

17.
Recent investigations of mate choice indicate that the genetic effect of sires on offspring fitness may depend on the interaction between maternal and paternal genotypes and the environmental conditions experienced by the offspring. Alternative colour morphs of the pygmy grasshopper, Tetrix subulata , represent ecological strategies that differ in body size, life history, thermoregulatory behaviour, and habitat selection. The hypothesis that selection promotes behaviours maintaining coadapted gene complexes predicts individuals to mate assortatively with respect to colour morph. On the other hand, the bet-hedging hypothesis predicts that the temporal variability of the environment inhabited by these animals may select for disassortative mating behaviour resulting in heterogeneous offspring. To distinguish between these competing hypotheses, we investigated mating behaviours using dual-choice experiments. Our results were not in agreement with the prediction of assortative mating but suggest instead that matings were random with regard to colour morph. Polyandry was common, and females mated with the second male regardless of whether the first mating was assortative or disassortative. Polyandry also was equally frequent among females in triads in which the two males belonged to different colour morphs as in triads where both males belonged to the same colour morph. A field experiment confirmed that polyandry occurred also among free-ranging individuals, and uncovered variation in mating success among male colour morphs, probably due to indirect effects of coloration on activity or habitat use. The consequences of this random and polyandrous mating strategy for the evolutionary dynamics of the colour polymorphism remain to be explored.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 491–499.  相似文献   

18.
Summary A traditional focus of evolutionary paleoecology has been the reconstruction of the selective forces that have affected evolving lineages through time. If the history of those lineages is dominated by stasis and punctuation, however, this is at best an inadequate and at worst a misdirected research strategy for macroevolution, because long-term stasis implies that environmental factors may have less influence on evolving lineages than previously believed. Such reasoning has led some proponents of punctuated views to reject ecological interactions as predominant or even significant forces in evolution. This is not a necessary conclusion. It is possible to accept the empirical predominance of stasis in evolution and at the same time the importance of ecology in affecting the course of evolutionary trends within lineages. If stasis prevails, ecology matters in the evolution of lineages if either (1) stabilizing selection is an important cause of stasis or (2) ecological interactions play an important role in controlling the speciation process. Viewing allopatric speciation explicitly as a three-stage process (consisting of formation, persistence and differentiation of isolated populations) clarifies testing of the role of ecology in speciation and may redirect clade-specific evolutionary paleoecology towards more enlightening interaction with other areas of macroevolutionary study.  相似文献   

19.
Sharon Y. Strauss 《Oikos》2014,123(3):257-266
It is easier to predict the ecological and evolutionary outcomes of interactions in less diverse communities. As species are added to communities, their direct and indirect interactions multiply, their niches may shift, and there may be increased ecological redundancy. Accompanying this complexity in ecological interactions, is also complexity in selection and subsequent evolution, which may feed back to affect the ecology of the system, as species with different traits may play different ecological roles. Drawing from my own work and that of many others, I first discuss what we currently understand about ecology and evolution in light of simple and diverse communities, and suggest the importance of escape from community complexity per se in the success of invaders. Then, I examine how community complexity may influence the nature and magnitude of eco‐evolutionary feedbacks, classifying eco‐evolutionary dynamics into three general types: those generating alternative stable states, cyclic dynamics, and those maintaining ecological stasis and stability. The latter may be important and yet very hard to detect. I suggest future directions, as well as discuss methodological approaches and their potential pitfalls, in assessing the importance and longevity of eco‐evolutionary feedbacks in complex communities. Synthesis The ecology, evolution and eco‐evolutionary dynamics of simple and diverse communities are reviewed. In more diverse communities, direct and indirect interactions multiply, species’ niches often shift, ecological redundancy can increase, and selection may be less directional. Community complexity may influence the magnitude and nature of eco‐evolutionary dynamics, which are classified into three types: those generating alternative stable states, cyclic dynamics, and those maintaining ecological stasis and stability. Strengths and pitfalls of approaches to investigating eco‐evolutionary feedbacks in complex field communities are discussed.  相似文献   

20.
Interactions between cytoplasmic (generally organelle) and nuclear genomes may be relatively common and could potentially have major fitness consequences. As in the case of within-genome epistasis, this cytonuclear epistasis can favor the evolutionary coadaptation of high-fitness combinations of nuclear and cytoplasmic alleles. Because cytoplasmic factors are generally uniparentally inherited, the cytoplasmic genome is inherited along with only one of the nuclear haplotypes, and therefore, coadaptation is expected to evolve through the interaction of these coinherited (usually maternally inherited) genomes. Here I show that, as a result of this coinheritance of the two genomes, cytonuclear epistasis can favor the evolution of genomic imprinting such that, when the cytoplasmic factor is maternally inherited, selection favors maternal expression of the nuclear locus and when the factor is paternally inherited selection favors paternal expression. Genomic imprinting evolves in this model because it leads to a pattern of gene expression in the nuclear haplotype that is coadapted with (i.e., adaptively coordinated with) gene expression in the coinherited cytoplasmic genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号