首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we show that distinct compartmentalization patterns of the IL-1 molecules (IL-1alpha and IL-1beta), in the milieu of tumor cells that produce them, differentially affect the malignant process. Active forms of IL-1, namely precursor IL-1alpha (pIL-1alpha), mature IL-1beta (mIL-1beta), and mIL-1beta fused to a signal sequence (ssIL-1beta), were transfected into an established fibrosarcoma cell line, and tumorigenicity and antitumor immunity were assessed. Cell lines transfected with pIL-1alpha, which expresses IL-1alpha on the membrane, fail to develop local tumors and activate antitumor effector mechanisms, such as CTLs, NK cells, and high levels of IFN-gamma production. Cells transfected with secretable IL-1beta (mIL-1beta and ssIL-1beta) were more aggressive than wild-type and mock-transfected tumor cells; ssIL-1beta transfectants even exhibited metastatic tumors in the lungs of mice after i.v. inoculation (experimental metastasis). In IL-1beta tumors, increased vascularity patterns were observed. No detectable antitumor effector mechanisms were observed in spleens of mice injected with IL-1beta transfectants, mock-transfected or wild-type fibrosarcoma cells. Moreover, in spleens of mice injected with IL-1beta transfectants, suppression of polyclonal mitogenic responses (proliferation, IFN-gamma and IL-2 production) to Con A was observed, suggesting the development of general anergy. Histologically, infiltrating mononuclear cells penetrating the tumor were seen at pIL-1alpha tumor sites, whereas in mIL-1beta and ssIL-1beta tumor sites such infiltrating cells do not penetrate inside the tumor. This is, to our knowledge, the first report on differential, nonredundant, in vivo effects of IL-1alpha and IL-1beta in malignant processes; IL-1alpha reduces tumorigenicity by inducing antitumor immunity, whereas IL-1beta promotes invasiveness, including tumor angiogenesis, and also induces immune suppression in the host.  相似文献   

2.
Immunosuppressive therapy for organ transplantation is essential for controlling rejection. When liver transplantation is performed as a therapy for hepatocellular carcinoma (HCC), recurrent HCC is one of the most fatal complications. In this study, we show that intratumoral murine IL-12 (mIL-12) gene therapy has the potential to be an effective treatment for malignancies under immunosuppression. C3H mice (H-2(k)), injected with FK506 (3 mg/kg) i.p., were s.c. implanted with 2.5 x 10(6) MH134 cells (H-2(k)) and we treated the established HCC with electroporation-mediated gene therapy using mIL-12 plasmid DNA. Intratumoral gene transfer of mIL-12 elevated intratumoral mIL-12, IFN-gamma, and IFN-gamma-inducible protein-10, significantly reduced the number of microvessels and inhibited the growth of HCC, compared with HCC-transferred control pCAGGS plasmid. The inhibition of tumor growth in immunosuppressed mice was comparable with that of mIL-12 gene therapy in immunocompetent mice. Intratumoral mIL-12 gene therapy enhanced lymphocytic infiltration into the tumor and elicited the MH134-specific CTL response even under FK506. The dose of FK506 was sufficient to prevent the rejection of distant allogenic skin grafts (BALB/c mice, H-2(d)) and tumors, B7-p815 (H-2(d)) used as transplants, during mIL-12 gene therapy against MH134. Ab-mediated depletion studies suggested that the inhibition of tumor growth, neovascularization, and spontaneous lung metastasis by mIL-12 was dependent almost entirely on NK cells and partially on T cells. These results suggest that intratumoral mIL-12 gene therapy is a potent effective strategy not only to treat recurrences of HCC in liver transplantation, but also to treat solid malignant tumors in immunosuppressed patients with transplanted organ.  相似文献   

3.
In previous studies, we demonstrated an immune suppressive network in non-small cell lung cancer that is due to overexpression of tumor cyclooxygenase 2 (COX-2). In this study, we assessed the vaccination response to tumor challenge following either pharmacological or genetic inhibition of COX-2 in a murine lung cancer model. Treatment of naive mice with the COX-2 inhibitor, SC-58236, skewed splenocytes toward a type 1 cytokine response, inducing IFN-gamma, IL-12, and IFN-gamma-inducible protein 10, whereas the type 2 cytokines IL-4, IL-5, and IL-10 remained unaltered. Fifty percent of mice receiving SC-58236 and an irradiated tumor cell vaccine completely rejected tumors upon challenge. Those mice that did form tumors following challenge demonstrated a reduced tumor growth. In contrast, all mice either vaccinated with irradiated tumor cells alone or receiving SC-58236 alone showed progressive tumor growth. Studies performed in CD4 and CD8 knockout mice revealed a requirement for the CD4 T lymphocyte subset for the complete rejection of tumors. To determine the role of host COX-2 expression on the vaccination responses, studies were performed in COX-2 gene knockout mice. Compared with control littermates, COX-2(-/-) mice showed a significant tumor growth reduction, whereas heterozygous COX-2(-/+) mice had an intermediate tumor growth reduction following vaccination. In vivo depletion of IFN-gamma abrogated the COX-2 inhibitor-mediated enhancement of the vaccination effect. These findings provide a strong rationale for additional evaluation of the capacity of COX-2 inhibitors to enhance vaccination responses against cancer.  相似文献   

4.
5.
We constructed pSin-SV40-HDV-SV40pA, an improved Sindbis DNA expression vector, and evaluated the potential of this vector system for brain tumor therapy. We investigated whether immunizing mice with xenogeneic DNA encoding human gp100 and mouse IL-18 would enhance the antitumor responses. To study the immune mechanisms involved in tumor regression, we examined tumor growth in B16-gp100-implanted brain tumor models using T-cell subset-depleted and IFN-gamma-neutralized mice. Hugp100/mIL-18 vaccination was also investigated for its antitumor effects against the wild-type murine B16 tumor, which expresses the murine gp100 molecule. Genetic immunization using plasmid pSin 9001 DNA codelivery of human gp100 and mouse IL-18 resulted in enhanced protective and therapeutic effects on the malignant brain tumors. The antitumor and protective effects were mediated by both CD4(+)/CD8(+) T cells and IFN-gamma. Vaccination with hugp100/mIL-18 conferred a significant survival merit to wild-type B16 tumor-harboring mice. Immunogene therapy with the improved Sindbis virus vector expressing xenogeneic gp100 and syngeneic IL-18 may be an excellent approach for developing a new treatment protocol. Thus, the Sindbis DNA system may represent a novel approach for the treatment of malignant brain tumors.  相似文献   

6.
The causes of the decreased immune responsiveness in tumor-bearing hosts are incompletely understood. The impact of a decreased immune response in cancer patients on the clinical response in immunotherapy trials has not been evaluated. The present report demonstrates a marked decrease in the therapeutic efficacy of adoptively transferred T lymphocytes obtained from murine hosts bearing tumor for greater than 30 days [late tumor-bearing mice (TBM)] as compared with normal mice and mice bearing tumor for less than 21 days (early TBM). In vitro analysis of the functions of the T lymphocytes from late TBM showed an apparently normal proliferative response to anti-CD3 and IL-2 with adequate lymphokine production from CD4+ cells, but a significant decrease in the cytotoxic function of CD8+ cells. The decreased cytotoxicity was not because of cell-mediated suppression. The expression of granzyme B mRNA was significantly delayed and decreased in magnitude in CD8+ cells from late TBM. Culture supernatants from two unrelated tumor cell lines were able to inhibit the cytotoxic activity of normal CD8+ cells in vitro. The tumor-derived suppressive factor is not transforming growth factor-beta (TGF-beta), but it has not been further characterized. The data suggest that one potential mechanism responsible for immunologic defects in patients with large tumor burdens is a tumor-induced defect that compromises the function of CD8+ effector T cells.  相似文献   

7.
The role of interleukin-2 (IL-2) on tumor growth of B16F10 melanoma cells was assessed in two sets of mice with different immune status: normal (immunocompetent) mice and immunodeficient mice. The two sets of animals were treated with cyclophosphamide (CY) or IL-2 alone or with a combined therapy of CY+IL-2. On days 6 and 10 after tumor cell injection, we evaluated the incidence of hepatic B16 melanoma metastases and the percentage of hepatic volume occupied by metastatic tissue. We observed that the CY alone (300 mg/kg, days 3 and 8 post-tumoral inoculation) significantly reduced tumor growth in all treated mice; however, CY proved more effective in normal recipients than in immunodeficient hosts. On the other hand, whereas administration of IL-2 alone (105 IU daily, from day 3 to day 7) in immunocompetent mice significantly reduced tumor growth on days 6 and 10, in immunodeficient mice, no significant differences were observed in tumor growth either on the 6th or on the 10th day, in comparison to control groups. Finally, when the combined CY+IL-2 therapy was administered, an antisynergistic effect between these therapeutic agents was achieved both in normal and in immunodeficient mice. Thus, the addition of low-dose IL-2 (25×103 IU daily, from day 4 to day 7) to high-dose CY (300 mg/kg, days 3 and 8) significantly increased tumor growth in both the early and later periods, compared to the effect of CY alone. It is concluded that exogenous IL-2 can facilitate tumor growth of B16 melanoma cells in vivo.  相似文献   

8.
小鼠白细胞介素21瘤苗的构建及其抗肿瘤效应研究   总被引:5,自引:0,他引:5  
目的:建立稳定表达小鼠白细胞介素21(mIL-21)的肿瘤细胞瘤苗,观察其在小鼠体内是否能够诱导有效的抗肿瘤免疫反应及免疫记忆效应。方法:将已鉴定的重组质粒pcDNA3.1/mIL-21用脂质体法转染Sp2/0细胞制备瘤苗,RT-PCR法鉴定瘤苗中mIL-21的表达。通过流式细胞仪检测细胞周期来反映瘤苗体外增殖活性,再将其接种BALB/c小鼠,监测肿瘤生长情况,观察mIL-21瘤苗诱导的抗肿瘤效应;用ELISA法检测血清IFN-γ和IL-4含量。结果:得到稳定表达mIL-21的瘤苗Sp2/0-mIL-21。与对照组相比,体外增殖活性无差异。皮下接种BALB/c小鼠后,肿瘤生长缓慢,部分小鼠无瘤体生长并长期存活;用野生株Sp2/0瘤细胞再次攻击未长肿瘤的实验小鼠,4周后亦未见肿瘤生长。接种瘤苗小鼠血清中IFN-γ水平明显上升,IL-4无明显增高。结论:成功构建了mIL-21瘤苗Sp2/0-mIL-21,其能诱导有效的抗肿瘤免疫反应及免疫记忆效应。  相似文献   

9.
10.
Two mouse tumor cell lines, Meth A (BALB/c mouse-derived fibrosarcoma) and MM46 (C3H/He mouse-derived mammary tumor), were shown to express high levels of complement receptor-related gene y/p65 (Crry/p65), a membrane-bound complement-regulatory protein. Inhibiting the complement-regulatory activity of Crry/p65 with mAb 5D5 induced high levels of C3 deposition on in vivo tumor-derived Meth A and MM46 cells. To determine the effect of Crry/p65 blockade and increased C3 deposition on in vivo tumor growth, Meth A and MM46 cells were treated with 5D5 mAb and injected into BALB/c and C3H/He mice, respectively. Pretreating MM46 cells with 5D5 mAb significantly suppressed their tumorigenicity when injected s.c. Pretreatment with 5D5 mAb had a modest effect on Meth A s.c. tumor growth. Because complement is involved in the induction of an immune response, we investigated the effect of Crry/p65 blockade and increased C3 deposition on the immunogenicity of the tumor cells in a vaccination protocol. Vaccination of mice with irradiated Meth A cells pretreated with 5D5 mAb protected mice from subsequent challenge. In contrast, vaccination with irradiated Meth A cells without pretreatment was not protective. Survival was correlated with a high titer IgM response and specific CTL activity. These data demonstrate that the functional inhibition of Crry/p65 on tumor cells affects tumor growth and immunogenicity, and that the complement deposition resulting from this inhibition can act in concert with antitumor effector mechanisms to elicit potent antitumor immunity in vivo.  相似文献   

11.
New strategies of immunotherapy are currently being evaluated, and the combination of chemo- and immunotherapy has shown promising results. The cytokine interleukin-21 (IL-21) is known to enhance immune function, and in this study we have investigated its ability to boost the efficacy of chemoimmunotherapy—cyclophosphamide and adoptive cell transfer (ACT)—in the B16-OVA/OT-I murine model of malignant melanoma. Subcutaneous B16-OVA tumors were established in C57BL/6J mice 8 days before adoptive transfer of tumor-specific OT-I T cells. In addition to cyclophosphamide and ACT, one group of mice received daily injections of murine IL-21 (mIL-21). Mice treated with mIL-21 had more tumor-specific T cells in the circulation 4 and 7 days following ACT (P = 0.004 and P = 0.002, respectively). Importantly, mIL-21 and ACT controlled tumor growth instantly and more effectively than ACT alone (P = 0.001, day 4)—an effect that persisted up to 5 days after the last mIL-21 injection. We conclude that mIL-21 enhances chemoimmunotherapy: it amplifies the number of tumor-specific T cells in the circulation and also stunts early tumor growth.  相似文献   

12.
Interleukin 13 (IL-13) is immunoregulatory in many diseases, including cancer. The protective or suppressive role of CD1-restricted natural killer T cells (NKT cells) in tumor immunosurveillance and immunity is well documented. Interleukin 12 (IL-12) can activate type I NKT cells to produce interferon-gamma (IFN-gamma), whereas type II NKT cells may produce IL-13. The high-affinity chain of IL-13Ralpha2 may act as negative inhibitor, suppressing the action of IL-13 and helping to maintain tumor immunosurveillance. We constructed an mIL-13Ralpha2-Fc chimera in a eukaryotic expression vector and confirmed the identity of the recombinant protein by immunoblot analysis and binding to IL-13 in chemiluminescent ELISA. Such DNA vaccine was tested against syngeneic B16F10-Nex2 murine melanoma. In vivo experiments showed a protective effect mediated by high production of IFN-gamma and down-regulation of anti-inflammatory interleukins mainly by NKT 1.1(+) T cells. Biochemoterapy in vivo with plasmid encoding mIL-13Ralpha2-Fc in association with plasmid encoding IL-12 and the 7A cyclopalladated drug led to a significant reduction in the tumor evolution with 30% tumor-free mice. We conclude that IL-12 gene therapy, followed by continuous administration of IL-13Ralpha2-Fc gene along with 7A-drug has antitumor activity involving the high production of proinflammatory cytokines and low immune suppression, specifically by NK1.1(+)T cells producing IL-13 and IL-10.  相似文献   

13.
To investigate the influence of tumor producing interleukin-5 (IL-5) on growth kinetics of tumors, we transduced the murine IL-5 gene into murine colon C26 tumor cells. Two IL-5-secreting clones, low-level IL-5 producer C26-8B and high-level IL-5 producer C26-6F, were established. Both tumors, C26-6F and C26-8B, grew more slowly than the mock C26 tumor, although the in vitro growth rate of these IL-5 transfectants was much the same as that of the mock C26 cells. There was a significantly decreased number of colonies in the lung of mice given C26-6F or C26-8B tumors i.v. than in mice given mock C26 tumors i.v. Moreover, in mice given C26-6F cells i.v., a smaller number of tumor colonies in the lung was observed, as compared to the case with C26-6B cells. While the growth rate of C26-8B tumors in mice treated with anti-IL-5 mAb was more rapid than that seen in control mAb-treated mice, growth of C26-6F tumors in anti-IL-5-mAb-treated mice was slightly more rapid compared to findings in control mAb-treated mice. The isotypematched mAb did not alter the in vitro growth of mock-C26 cells or of the IL-5-gene-modified C26 cells. Growth of IL-5-secreting C26 tumors transplanted in nude mice was also inhibited. These results suggest that tumor-producing IL-5 inhibits growth of colon tumors mediated through T-cell-independent protective mechanisms of the host.  相似文献   

14.
To investigate the influence of tumor producing interleukin-5 (IL-5) on growth kinetics of tumors, we transduced the murine IL-5 gene into murine colon C26 tumor cells. Two IL-5-secreting clones, low-level IL-5 producer C26-8B and high-level IL-5 producer C26-6F, were established. Both tumors, C26-6F and C26-8B, grew more slowly than the mock C26 tumor, although the in vitro growth rate of these IL-5 transfectants was much the same as that of the mock C26 cells. There was a significantly decreased number of colonies in the lung of mice given C26-6F or C26-8B tumors i.v. than in mice given mock C26 tumors i.v. Moreover, in mice given C26-6F cells i.v., a smaller number of tumor colonies in the lung was observed, as compared to the case with C26-6B cells. While the growth rate of C26-8B tumors in mice treated with anti-IL-5 mAb was more rapid than that seen in control mAb-treated mice, growth of C26-6F tumors in anti-IL-5-mAb-treated mice was slightly more rapid compared to findings in control mAb-treated mice. The isotypematched mAb did not alter the in vitro growth of mock-C26 cells or of the IL-5-gene-modified C26 cells. Growth of IL-5-secreting C26 tumors transplanted in nude mice was also inhibited. These results suggest that tumor-producing IL-5 inhibits growth of colon tumors mediated through T-cell-independent protective mechanisms of the host.  相似文献   

15.
Two murine interleukin-6 (mIL-6) variants were constructed using the polymerase chain reaction (PCR), one lacking the last five residues (183-187) at the C-terminus (pMC5) and another with the last five residues of mIL-6 substituted by the corresponding residues of human IL-6 (pMC5H). The growth stimulatory activity of pMC5 on the mouse hybridoma cell line 7TD1 was < 0.05% of mIL-6, whereas pMC5H and mIL-6 were equipotent. The loss of biological activity of pMC5 correlated with its negligible receptor binding affinity on 7TD1 cells, while the binding of pMC5H was comparable to that of mIL-6. Both pMC5 and pMC5H, like mIL-6, failed to interact with recombinant soluble human IL-6 receptor when assayed by surface plasmon resonance-based biosensor analysis. These studies suggest that the C-terminal seven amino acids of human IL-6, alone, do not define species specificity for receptor binding. A variety of biophysical techniques, as well as the binding of a conformational-specific monoclonal antibody, indicated that the global fold of the mIL-6 variants was similar to that of mIL-6, although small changes in the NMR spectra, particularly for pMC5, were observed. Some of these changes involved residues widely separated in the primary structure. For instance, interactions involving Tyr-22 were influenced by the C-terminal amino acids suggesting that the N- and C-termini of mIL-6 are in close proximity. Equilibrium unfolding experiments indicated that pMC5 was 0.8 kcal/mol less stable than mIL-6, whereas pMC5H was 1.4 kcal/mol more stable. These studies emphasize the structural importance of the C-terminal amino acids of IL-6 and suggest that truncation or mutation of this region could lead to small but significant alterations in other regions of the molecule.  相似文献   

16.
Systemic administration of Salmonella to tumor-bearing mice leads to preferential accumulation within tumor sites and retardation of tumor growth. However, the detailed mechanism of Salmonella-induced antitumor immune response via host T cell remains uncertain. Herein, we used wild-type, CD4+ T-cell-deficient, and CD8+ T-cell-deficient mice to study the role of T cell in the antitumor immune responses induced by Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis). When systemically administered into mice bearing tumors, Salmonella Choleraesuis significantly inhibited tumor growth by 50%. In contrast, in T-cell-deficient mice, there was only 34–42% inhibition of tumor growth. We found that treatment with Salmonella Choleraesuis significantly upregulates interferon-γ in wild-type and CD8+ T-cell-deficient mice, but not in CD4+ T-cell-deficient mice. Furthermore, immunohistochemical staining of the tumors revealed more infiltration of macrophages and neutrophils in wild-type mice after Salmonella Choleraesuis treatment compared with those in T-cell-deficient mice. The antitumor therapeutic effect mediated by Salmonella Choleraesuis is associated with an inflammatory immune response at the tumor site and a tumor T helper 1-type immune response. In conclusion, these results suggest that tumor-targeted therapy using Salmonella Choleraesuis, which exerts tumoricidal effects and stimulates T cell activities, represents a potential strategy for the treatment of tumor.  相似文献   

17.
In patients with Stage II or III breast cancer and in patients with liver metastases from breast cancer, we examined cellular interaction in the cytotoxicity against autologous tumor cells by interleukin-2(IL-2)-cultured lymphocytes (CL) and fresh peripheral blood lymphocytes (FPBL) treated with immunochemotherapy including OK-432 and cyclophosphamide. In flow cytometric analysis, CD8 + CD11b+ and CD16+ cells significantly decreased after immuno-chemotherapy in both groups of patients. A protocol study in Stage II or III breast cancer patients showed suppressive activity of FPBL on the cytotoxic activity of CL in 3/9 of the non-treatment group but no suppressive activity and enhancing activity in 3/7 in the immuno-chemotherapy group. Moreover, in 19 patients with liver metastases from breast cancer treated with immuno-chemotherapy including adoptive immunotherapy, FPBL in 6/19 showed enhancing activity, and in 8/19 suppressive activity in the lysis of autologous tumor cells. In assaysin vitro using autologous and allogeneic tumor cells, FPBL showed a partial specificity in cellular interaction against autologous tumor cells. CD4-depleted FPBL inhibited cytotoxicity of CL, while CD8-depleted FPBL enhanced cytotoxicity of CL in patients with liver metastases. These results suggest that immuno-chemotherapy eliminates the suppressive population in FPBL and may induce tumor regression if combined with adoptive immunotherapy using CL.Abbreviations IL-2 interleukin-2 - CL IL-2-cultured lymphocytes - FPBL fresh peripheral blood lymphocytes - AIT adoptive immunotherapy  相似文献   

18.
The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 g/day) from day –5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days –10 to –1 was used as opposed to –5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1g/day, from day –10 to –1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC 104E cells, they could reject Meth-A sarcoma cells but not MOPC 104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augumented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.  相似文献   

19.
20.
Despite its potent immunostimulatory properties, vaccination with autologous tumor-derived gp96 has relatively modest antitumor effect in a range of clinical trials. Based on our previous study showing a gp96-mediated immune balance between CTL and Tregs, here we investigated possible synergy between gp96 vaccine and systemic Treg depletion on induction of antitumor T-cell immunity and the mechanisms accounting for synergistic efficacy. In gp96-peptide complex immunized BALB/c mice, anti-CD25 mAb treatment significantly increased IFN-γ-producing CD8(+) and CD4(+) T cells by about 1-2-fold in spleen and 40-50% in lymph node. A significantly higher number of peptide-specific CTL were observed under anti-CD25 mAb treatment compared with no treatment. Moreover, Treg depletion synergistically improved the anticancer activity of tumor-derived gp96 vaccine in the poorly immunogenic and highly tumorigenic B16 melanoma model in C57BL/6?J mice. While gp96 immunization alone led to the modest enhancement of CTL activities in spleen, the combination with Treg depletion dramatically increased tumor-specific CTL responses. In addition, the combination resulted in a significant increase of CD8(+) T-cell infiltration in tumor, which correlated with an enhanced inhibition of tumor growth. Our results provide evidence that targeting Tregs may provide a more efficient strategy to potentiate gp96-mediated T-cell responses and enhance the antitumor efficiency of gp96-based therapeutic vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号