共查询到20条相似文献,搜索用时 62 毫秒
1.
基于国际冻原计划(ITEX)模拟增温效应对植物影响的研究方法,以高寒矮嵩草草甸4种植物(矮嵩草、垂穗披碱草、棘豆、麻花艽)为实验材料,设置大(OTC1)和小(OTC2)两类增温小室,测定了其叶片碳氮及其稳定性碳同位素(δ~(13)C、δ~(15)N)等指标在增温3年后的变化。结果表明:除矮嵩草在较小增温小室(OTC2)中C/N比值比对照降低了14.1%,其它物种C/N在两个增温处理下都有所增加,但差异均不显著(P0.05)。4种植物叶片δ~(13)C值在-24.12‰~-28.34‰之间,矮嵩草叶片δ~(13)C值随增温而升高,棘豆、麻花艽随增温而降低,且矮嵩草在OTC2的δ~(13)C值变化达到显著水平(P0.05)。矮嵩草和麻花艽的叶片δ~(15)N值在OTC1和OTC2中均比对照增加,且麻花艽增加较显著(P0.05)。垂穗披碱草在OTC1和OTC2的叶片δ~(15)N值比对照分别减少18.7%和26.9%,差异都不显著(P0.05);棘豆叶片δ~(15)N值在OTC2内比对照低11.0%(P0.05),在OTC1的内比对照高2.8%(P0.05)。可见,高寒矮嵩草草甸不同功能群植物物种碳氮含量及稳定性碳氮同位素含量对短期增温有不同的响应模式和规律。 相似文献
2.
水肥耦合效应对楸树苗木叶片δ~(13)C的影响 总被引:1,自引:0,他引:1
以楸树(Catalpa bungei)无性系004-1苗木为研究对象,采用三因素五水平二次回归通用旋转组合设计进行盆栽试验,通过测定6、7和8月份20个处理楸树苗木叶片碳同位素组成δ~(13)C、总氮含量和总磷含量,建立数学模型,分析土壤水分、施氮量和施磷量的主因子效应、单因素效应及其耦合效应对叶片δ~(13)C的影响,以及叶片碳同位素组成δ~(13)C与其总氮含量和总磷含量的关系。结果表明:(1)楸树苗木叶片δ~(13)C存在明显的月动态变化特征,总体上呈现出6月份高于7、8月份的趋势,20个处理苗木叶片δ~(13)C平均值(6~8月)变化范围介于-29.12‰~-26.60‰之间;(2)土壤水分对叶片δ~(13)C有显著负效应,施氮量对叶片δ~(13)C有显著正效应,并且施氮量主效应大于土壤水分主效应,但施磷量对叶片δ~(13)C无显著主效应;单因素效应分析表明,楸树苗木叶片δ~(13)C随土壤水分或施氮量的增加均呈先增加后减小的"抛物线型"关系;土壤水分×施N量对楸树苗木叶片δ~(13)C有显著耦合负效应,土壤水分和施氮量耦合效应图表明,叶片δ~(13)C随土壤水分降低、施氮量增加而逐渐增加;(3)6月、7月和8月份楸树苗木叶片δ~(13)C与其叶片总氮含量均呈显著正相关关系(P0.05;n=100),但叶片δ~(13)C与总磷含量无显著相关关系(P0.05;n=100)。研究认为,楸树苗木叶片碳同位素组成δ~(13)C随生长期表现出动态变化特征,它受到土壤水分、水氮耦合的显著负向影响,以及施氮量的显著正向影响,可以通过合理水肥配施措施大幅提高楸树苗木δ~(13)C。 相似文献
3.
以烤烟品种K326为试验材料,在云南、福建和河南三个生态烟区大田种植,自烟叶生理成熟期起至工艺成熟期,分4次采集中部(第11叶位)烟样,对烟叶的δ13 C值、总碳、全氮、光合色素等进行测定,比较不同生态烟区烤烟δ13 C值的分布、生理生态适应性及品质特征。结果表明:(1)三个生态烟区烟叶δ13 C值、总碳、碳氮比、比叶重、叶绿素a、总叶绿素含量均表现为云南福建河南,全氮含量则为河南云南福建,叶绿素b含量为云南河南福建,类胡萝卜素含量为河南福建云南,其中的δ13 C值、总碳、碳氮比、类胡萝卜素含量在福建和云南烟区间较为接近。(2)烟叶δ13 C值与总碳含量在云南呈正相关,在福建、河南呈负相关关系;三个生态烟区烟叶δ13 C值与全氮含量均呈负相关关系;δ13 C值与光合色素含量在云南、河南烟区均呈正相关关系,在福建烟区均呈负相关关系;δ13 C值与烟碱、氮、钾、氯呈负相关关系,与总糖、还原糖呈正相关关系。(3)云南烤烟香韵丰富,刺激性中等,化学成分协调性最好;河南烤烟香气量较高,刺激性较大;福建烤烟在香气量和化学成分协调性方面表现较差。研究发现,烟叶δ13 C值与烟叶的生理特征、品质特征存在紧密联系,用烟叶的δ13 C值、生理指标、化学品质可区分不同生态烟区烤烟香气风格和品质特征。 相似文献
4.
植物根呼吸是土壤呼吸的主要组成,研究根呼吸对生态系统碳收支及碳平衡有重要意义。采用~(13)C脉冲标记技术,在3种供水条件下,对比不同根离体时间(标记后0,6,24,48,216,360 h)的白羊草离体根呼吸速率和根呼吸释放的δ~(13)C同位素比值变化,分析根参数与离体根呼吸相关性。结果表明:1)不同离体时间的离体根呼吸速率变化趋势一致,3种供水条件下无显著差异,均在0—20 min急剧下降,下降范围为32%—39%。2)测定离体根呼吸释放的δ~(13)C在不同离体时间的变化,为实时监测转移到白羊草根系的~(13)CO_2在根部释放的过程提供了新思路;不同离体时间,3种供水条件下根呼吸释放的δ~(13)C在2 h内均值大小呈:供水充分轻度胁迫重度胁迫。随离体时间(0—360 h)推移根呼吸释放的δ~(13)C均值先增大后减小,在216 h达到峰值31.46‰;3)离体根呼吸速率和根呼吸释放的δ~(13)C受根系根面积、比根面积、N含量、C/N及根组织δ~(13)C的影响显著。4)轻度水分胁迫可促使根系生长(C固定)和根呼吸(C代谢)同时增加。 相似文献
5.
受太阳活动的影响,树冠不同方位以及内外部的叶片接受到的光照存在差异,造成温度、湿度等小气候因子也存在差异。叶片的形态解剖结构和生理特性等会对外界环境条件的改变发生响应。为了更好地了解树木生长的局部小环境条件差异对树木生长的影响,该文选择国槐(Sophora japonica)、悬铃木(Platanus orientalis)、银杏(Ginkgo biloba)、榕树(Ficus mi-crocarpa)和黄葛榕(F.lacor)5种冠幅较大的树种,通过测定树冠内外部及4个方位上的比叶重(leaf mass per area,LMA)、叶绿素a(chlorophyll a,Chl a)、叶绿素b(chlorophyll b,Chl b)及类胡萝卜素(carotenoid,Car)的含量及碳稳定同位素比率(carbon isotope ratio,δ13C)等指标,研究叶片形态、生理指标等随树冠开度的变化以及方位差异。结果表明,叶片LMA和δ13C均随树冠开度增加而增大,光合色素含量则相反;叶片LMA和δ13C的方位变化则是南向西向北向东向,与叶片所接受到的光强变化规律一致,而光合色素含量的方位差异较复杂、且因树种而异,总的来说,以受光最弱的东向含量最高。上述结果表明,树冠外围和南向、西向的叶片由于接受到的光能较多、温度高、相对湿度小等,其叶片会增大单位面积的重量、减小气孔开度和光合色素含量,从而减少对光能的吸收,也使光合作用降低、δ13C增大,而不同方位光照对光合色素含量的影响机制较为复杂,这些都表明了叶片对周围小气候的形态和生理上的适应。 相似文献
6.
为探讨会仙喀斯特湿地不同生长环境下植物叶片碳(C)、氮(N)、磷(P)、稳定碳同位素(δ~(13)C)特征及其生态学指示意义,该文以挺水植物芦苇、浮水植物水葫芦和沉水植物金鱼藻为研究对象,分析了三种典型不同生活型植物叶片的δ~(13)C特征及种间和微生境的差异,并基于植物碳同位素与碳酸酐酶显著正相关的二端元模型,估算了植物利用光合作用固定的碳酸氢根离子(HCO3-)的碳量。结果表明:(1)三种植物叶片δ~(13)C的变化范围为-28.47‰~-21.69‰,平均值为-24.83‰,不同生活型植物间δ~(13)C存在差异,金鱼藻水葫芦芦苇。(2)植物δ~(13)C值与叶片C、N和P元素含量间呈显著正相关,与C/N、C/P和N/P呈显著负相关关系,与底泥的有机质、速效氮、总氮、速效磷和总磷含量呈显著正相关。(3)会仙喀斯特湿地三种不同生活型植物叶片N/P平均值为10.34,表现出植物受N、P共同影响的特征。(4)δ~(13)C的变化特征,揭示了三种水生植物可能通过增加磷利用效率来促进低水分利用率环境下的碳的合成,通过提高植物水分利用效率的策略来代偿较低的氮素利用效率。(5)芦苇光合作用固定HCO3-碳量为159.60 t·a~(-1)·km~(-2),水葫芦为10.80 t·a~(-1)·km~(-2),金鱼藻为9.24 t·a~(-1)·km~(-2),平均值为59.88 t·a~(-1)·km~(-2)。会仙喀斯特湿地植物的不同生活型、光合作用途径和生长微环境,是影响叶片δ~(13)C变化的主要因素。 相似文献
7.
为了探讨添加小麦秸秆和磷素对低磷土壤微生物数量和群落结构的影响,设置2个梯度的小麦秸秆添加量(N0和N1分别为0和2.08 g·kg-1)和4个施磷水平(P0、P1、P2和P3分别为0、100、200和400 mg·kg-1)组合处理,采用磷脂脂肪酸(PLFA)法测定土壤微生物生物量.结果表明: 添加秸秆配合施入磷素对微生物总生物量、细菌生物量、真菌生物量和真菌/细菌(F/B)比值具有显著的促进作用,微生物总生物量、细菌生物量、真菌生物量和F/B均为N1P1>N1P0>N1P2>N1P3>N0P1>N0P2>N0P3.在相同磷素水平下,添加秸秆处理的各指标均显著高于未添加秸秆处理;在添加相同秸秆量条件下,施磷处理的各指标随磷素施入量先增加后降低,以P1水平组合最优,其次是P0,最后是P2和P3. 相似文献
8.
9.
秸秆还田对稻田土壤NH3挥发可产生影响,但相关排放变化规律和调控机制有待系统研究。以南粳46水稻品种为材料,太湖地区典型单季稻田原状土为研究对象,利用连续气流封闭法监测三种秸秆(水稻秸秆:RS;小麦秸秆:WS;玉米秸秆:MS)两种添加量(W秸秆:W土=0.5%、0.8%)下水稻各生长期NH3挥发通量、土壤理化因子及水稻产量;进而结合分子生物学技术,将环境因子与氮循环相关的功能微生物丰度进行耦合,揭示NH3挥发对不同种类秸秆和不同添加量的响应机制并解析关键因子,从而筛选出稻田生态系统氨减排效果最佳的秸秆还田种类及施用量。试验结果表明,秸秆种类及秸秆种类与其施用量交互作用对稻田土壤NH3挥发均产生显著影响,总体来看,与CK相比,施加秸秆处理NH3挥发变化幅度为-33.2%-27.3%。不同秸秆种类对稻田土壤NH3挥发影响不同,低添加量下,与CK相比,RS与WS施用对NH3挥发量均无显著影响,而MS施用显著增加NH3挥发量21.1%;高添加量下,RS施用显著降低NH3挥发量33.2%。不同秸秆施加量对稻田土壤NH3挥发影响亦不同,RS和MS处理下稻田NH3挥发量随施用量的增加分别降低31.2%和32.8%,而WS处理则呈现相反规律;不同秸秆种类及不同施加量交互作用下RS-0.8处理显著降低稻田土壤NH3挥发33.2%。田面水pH、总氮(TN)浓度、土壤微生物量碳含量(MBC)、土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)群落丰度是导致不同秸秆种类和用量下稻田土壤NH3挥发产生差异的主要影响因素;RS-0.8处理相较于其他处理显著增加土壤AOA、AOB群落丰度并显著降低田面水TN含量,综合效应下显著减少稻田NH3挥发量33.2%,并显著增加水稻产量22.9%。因此,综合稻田NH3挥发总量和水稻产量,秸秆施用水稻种植体系中水稻(RS)秸秆以0.8%施用量模式下减排增产效果最佳。 相似文献
10.
15N交叉标记有机与无机肥料氮的转化与残留 总被引:4,自引:0,他引:4
有机无机肥配施能够培肥土壤,改善土壤氮素供给,但目前有机无机肥配施主要集中在化肥氮的研究,忽略秸秆氮对化肥氮转化的影响。为了解秸秆还田对不同氮源转化和残留的影响,采用15N对尿素和水稻秸秆进行交叉标记,在两种不同肥力水稻土 (粘土矿物类型为1 ∶ 1型红黄泥和2 ∶ 1型紫潮泥) 进行水稻盆栽试验。设置对照(CK),单施尿素(15NU)、标记尿素与稻草配施(15NU-S) 和标记稻草与尿素配施(15NS-U)4个处理。结果表明,水稻吸收的氮素60%以上来自土壤氮,土壤氮素肥力相对较低的红黄泥较之紫潮泥对肥料氮的依赖更强;水稻生长期间微生物同化的尿素氮占标记底物的百分数红黄泥为1.8%-8.3%,紫潮泥为1.8%-19.2%;微生物同化的秸杆氮占标记底物的百分数红黄泥为1.7%-5.0%,紫潮泥为2.0%-6.2%。而粘土矿物固持的尿素氮占标记底物的百分数,红黄泥为0.3%-2.1%,紫潮泥为3.5%-18.7%;粘土矿物固持的秸杆氮红黄泥为0.2%-0.9%,紫潮泥为1.7%-5.0%。水稻成熟期尿素氮的残留率,红黄泥15NU处理、15NU+S分别为14.5%和17.0%,紫潮泥分别为16.9%和17.1%。秸秆氮的残留率分别为红黄泥38.8%、紫潮泥41.5%;有机无机肥配施提高了微生物同化化肥氮的能力,降低了粘土矿物晶格固持化肥氮的水平。有机无机配施提高了化肥氮利用率同时,提高了有机形态氮残留,降低了无机形态氮(矿质氮+固定态铵)的残留。 相似文献
11.
地膜覆盖是提高作物产量的重要措施,理解覆膜条件下黑土团聚体中外源碳和氮的固存特征,为深刻认识地膜覆盖措施的可持续应用提供理论依据。选取长期定位试验站(29年)不施肥(CK)、单施化肥(NPK)和有机肥配施化肥(MNPK)3个典型施肥处理,表层土壤(0—20 cm)添加13C15N双标记玉米秸秆后设置裸地和覆膜的田间原位微区培养试验,探讨不同施肥处理结合覆膜黑土团聚体中有机碳和全氮对秸秆来源碳和氮的响应。结果表明,与裸地相比,所有处理覆膜后微团聚体(<0.25 mm)中秸秆来源碳和氮的含量平均降低了26.49%和32.05%。覆膜MNPK与裸地处理相比大团聚体(>0.25 mm)中秸秆来源碳和氮的含量显著降低了35.58%和15.97%,但大团聚体中原土壤有机碳的含量提高了9.16%。在CK和NPK处理微团聚体中,秸秆来源碳占该粒级团聚体有机碳的比例表现为覆膜>裸地,而在MNPK处理各粒级团聚体中则表现为裸地>覆膜。无论覆膜与否,秸秆来源碳对团聚体有机碳和秸秆来源氮对团聚体全氮的贡献率受施肥处理的影响表现为CK>N... 相似文献
12.
Weixin Cheng 《Plant and Soil》1996,183(2):263-268
Due to the limitations in methodology it has been a difficult task to measure rhizosphere respiration and original soil carbon decomposition under the influence of living roots. 14C-labeling has been widely used for this purpose in spite of numerous problems associated with the labeling method. In this paper, a natural 13C method was used to measure rhizosphere respiration and original soil carbon decomposition in a short-term growth chamber experiment. The main objective of the experiment was to validate a key assumption of this method: the 13C value of the roots represents the 13C value of the rhizosphere respired CO2. Results from plants grown in inoculated carbon-free medium indicated that this assumption was valid. This natural 13C method was demonstrated to be advantageous for studying rhizosphere respiration and the effects of living roots on original soil carbon decomposition. 相似文献
13.
Biocide manipulation of N flow to investigate root/microbe competition in forest soil 总被引:2,自引:0,他引:2
Root/microbe competition was investigated as a mechanism controlling fertilizer N uptake by coniferous forest trees. Combinations of biocides both with and without 15N labelled urea, were applied to microcosms containing Sitka spruce seedlings, to selectively inhibit target microbial groups which may be competing with roots for N. After 1 growing season, concentrations of fertilizer N and total N in the trees, as well as populations of microbes and animals, were determined. Biocidal inhibition of microbial populations, particularly of fungi, was associated with significant increases in concentraions of fertilizer N and total N in Sitka spruce seedlings. Application of the fungicide benlate, for example, increased the concentration of fertilizer-derived N in spruce needles by one order of magnitude, and was associated with significant reductions in FDA-active hyphal lengths of fungi. This approach to investigating N-flow offers considerable potential for short term experiments involving competition for fertilizer/available N, where the microbial biomass represents the major sink for N in competition with roots. 相似文献
14.
The heterogeneous nature of microbial products as shown by solid-state13C CP/MAS NMR spectroscopy 总被引:1,自引:1,他引:0
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces. 相似文献
15.
Molecular size has limited solution NMR analyses of proteins. We report 13C–13C NOESY experiments on a 480 kDa protein, the multi-subunit ferritin nanocage with gated pores. By exploiting 13C-resonance-specific chemical shifts and spin diffusion effects, we identified 75% of the amino acids, with intraresidue C–C
connectivities between nuclei separated by 1–4 bonds. These results show the potential of 13C–13C NOESY for solution studies of molecular assemblies >100 kDa. 相似文献
16.
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constants (11–12 Hz), the long evolution periods (up to 30–40 ms) in the pulse sequences cannot be avoided. Therefore any effort to enhance sensitivity has to concentrate on manipulating the spin system in such a way that the spin–spin relaxation rates would be minimized. In the present paper we analyze the efficiency of the two known approaches of relaxation rate control, namely the use of multiple-quantum coherence (MQ) and of the relaxation interference between chemical shift anisotropy and dipolar relaxation – TROSY. Both theoretical calculations and experimental results suggest that for the sugar moiety (H1-C1-N1/9) the MQ approach is clearly preferable. For the base moiety (H6/8-C6/8-N1/9), however, the TROSY shows results superior to the MQ suppression of the dipole–dipole relaxation at moderate magnetic fields (500 MHz) and the sensitivity improvement becomes dramatically more pronounced at very high fields (800 MHz). The pulse schemes of the triple-resonance HCN experiments with sensitivity optimized performance for unambiguous assignments of intra-residual sugar-to-base connectivities combining both approaches are presented. 相似文献
17.
Florence Gaudin Françoise Paquet Luc Chanteloup Jean-Marie Beau Nguyen T. Thuong Gérard Lancelot 《Journal of biomolecular NMR》1995,5(1):49-58
Summary In order to examine the internal dynamic processes of the dodecamer d(CGCAAATTTGCG)2, the 13C-enriched oligonucleotide has been synthesized. The three central thymines were selectively 13C-labeled at the C1′ position and their spin-lattice relaxation parameters R(CZ), R(CX,Y), R(HZ→CZ), R(2HZCZ), R(2HZCX,Y) and R(H
infZ
supC
) were measured. Density functions were computed for two models of internal motions. Comparisons of the experimental data
were made with the spin-lattice relaxation rates rather than with the density functions, whose values were altered by accumulation
of the uncertainties of each relaxation rate measurement. The spin-lattice relaxation rates were computed with respect to
the motions of the sugar around the C1′-N1 bond. A two-state jump model between the anti- and syn-conformations with P(anti)/P(syn)=91/9
or a restricted rotation model with Δχ=28° and an internal diffusion coefficient of 30×107 s-1 gave a good fit with the experimental data. Twist, tilt or roll base motions have little effect on 13C1′ NMR relaxation. Simulation of spin-relaxation rates with the data obtained at several temperatures between 7 and 32 °C,
where the dodecamer is double stranded, shows that the internal motion amplitude is independent of the temperature within
this range, as expected for internal motion. Using the strong correlation which exists in a B-DNA structure between the χ
and δ angle, we suggest that the change in the glycosidic angle value should be indicative of a sugar puckering between the
C1′-exo and C2′-endo conformations. 相似文献
18.
Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica 总被引:5,自引:2,他引:5
Dynamics of soil organic carbon (SOC) inchronosequences of soils below forests that had beenreplaced by grazed pastures 3–25 years ago, wereinvestigated for two contrasting soil types (AndicHumitropept and Eutric Hapludand) in the Atlantic Zoneof Costa Rica. By forest clearing and subsequentestablishment of pastures, photosynthesis changes froma C-3 to a C-4 pathway. The accompanying changes inC-input and its 13C and 14Csignals, were used to quantify SOC dynamics. C-input from rootturnover at a pasture site was measured by sequentialharvesting and 14C-pulse labelling. With aspatial resolution of 5 cm, data on total SOC,13C and 14C of soil profileswere interpreted with a model that distinguishes threepools of SOC: active C, slow C and passive C,each with a 1-st order decomposition rate(ka, ks and kp). The modelincludes carbon isotope fractionation and depth-dependentdecomposition rates. Transport of C between soillayers was described as a diffusion process, whichaccounts for physical and biotic mixing processes.Calibrated diffusion coefficients were 0.42 cm2yr-1 for the Humitropept and 3.97 cm2yr-1 for the Hapludand chronosequence.Diffusional transport alone was insufficient foroptimal simulation; it had to be augmented bydepth-dependent decomposition rates to explain thedynamics of SOC, 13C and14C. Decomposition rates decreasedstrongly with depth. Upon increased diffusion,differences between calibrated decomposition rates ofSOC fractions between surface soils and subsoilsdiminished, but the concept of depth-dependentdecomposition had to be retained, to obtain smallresiduals between observed and simulated data. At areference depth of 15–20 cm ks was 90 yr-1in the Humitropept and 146 yr-1 in the Hapludand.Slow C contributed most to total organic C in surfacesoils, whereas passive C contributed most below 40 cmdepth. After 18–25 years of pasture, net loss of C was2180 g C m-2 for the Hapludand and 150 g m-2for the Humitropept soil. 相似文献
19.
Zhongfeng Ye Kazuya Nakagawa Masahiro Natsume Hideaki Nojiri 《Bioscience, biotechnology, and biochemistry》2017,81(6):1176-1184
Phytocassanes and momilactones are the major diterpenoid phytoalexins inductively produced in rice as bioactive substances. Regardless of extensive studies on the biosynthetic pathways of these phytoalexins, bioconversion of diterpene hydrocarbons is not shown in planta. To elucidate the entire biosynthetic pathways of these phytoalexins, uniformly 13C-labeled ent-cassadiene and syn-pimaradiene were enzymatically synthesized with structural verification by GC–MS and 13C-NMR. Application of the 13C-labeled substrates on rice leaves led to the detection of 13C-labeled metabolites using LC-MS/MS. Further application of this method in the moss Hypnum plumaeforme and the nearest out-group of Oryza species Leersia perrieri, respectively, resulted in successful bioconversion of these labeled substrates into phytoalexins in these plants. These results demonstrate that genuine biosynthetic pathways from these diterpene hydrocarbons to the end product phytoalexins occur in these plants and that enzymatically synthesized [U-13C20] diterpene substrates are a powerful tool for chasing endogenous metabolites without dilution with naturally abundant unlabeled compounds. 相似文献
20.
《Nucleosides, nucleotides & nucleic acids》2013,32(4):247-257
Synthesis and stereochemical characterization of enantiomerically pure nucleoside-3′-phosphorothioate esters and salts are reported. Vicinal carbon–phosphorus couplings reflect different predominance of the ? conformation in the isomeric (Rp and Sp) esters, while for the salts the ?t conformation prevails in both stereoisomers. The influence of solvent and temperature on the conformational preferences is also described. 相似文献