首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Spore-forming Bacillus sp. has been extensively studied for their probiotic properties. In this study, an acid-treated rice straw hydrolysate was used as carbon source to produce the spores of Bacillus coagulans. The results showed that this hydrolysate significantly improved the spore yield compared with other carbon sources such as glucose. Three significant medium components including rice straw hydrolysate, MnSO4 and yeast extract were screened by Plackett–Burman design. These significant variables were further optimized by response surface methodology (RSM). The optimal values of the medium components were rice straw hydolysate of 27% (v/v), MnSO4 of 0·78 g l−1 and yeast extract of 1·2 g l−1. The optimized medium and RSM model for spore production were validated in a 5 l bioreactor. Overall, this sporulation medium containing acid-treated rice straw hydrolysate has a potential to be used in the production of B. coagulans spores.  相似文献   

2.
A key challenge for bioprocess engineering is the identification of the optimum process conditions for the production of biochemical and biopharmaceutical compounds using prokaryotic as well as eukaryotic cell factories. Shake flasks and bench-scale bioreactor systems are still the golden standard in the early stage of bioprocess development, though they are known to be expensive, time-consuming, and labor-intensive as well as lacking the throughput for efficient production optimizations. To bridge the technological gap between bioprocess optimization and upscaling, we have developed a microfluidic bioreactor array to reduce time and costs, and to increase throughput compared with traditional lab-scale culture strategies. We present a multifunctional microfluidic device containing 12 individual bioreactors (Vt = 15 µl) in a 26 mm × 76 mm area with in-line biosensing of dissolved oxygen and biomass concentration. Following initial device characterization, the bioreactor lab-on-a-chip was used in a proof-of-principle study to identify the most productive cell line for lactic acid production out of two engineered yeast strains, evaluating whether it could reduce the time needed for collecting meaningful data compared with shake flasks cultures. Results of the study showed significant difference in the strains' productivity within 3 hr of operation exhibiting a 4- to 6-fold higher lactic acid production, thus pointing at the potential of microfluidic technology as effective screening tool for fast and parallelizable industrial bioprocess development.  相似文献   

3.
Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.  相似文献   

4.
A novel simple solid state fermentation method, netting bag bioreactor (Φ 120 × 800 mm), was developed and used to cultivate Bacillus licheniformis as probiotics. High spore yield (1.2 × 1011 CFU/g dry substrate) has been obtained by using this method. Comparing to the tray bioreactor and the packed bed bioreactor for Bacillus fermentation, the netting bag method was more cost-effective, time- and space-saving and the material cost is also as low as ca. US $293 per 1,000 kg spores. Thus, netting bag SSF can be widely applied to produce probiotic bacteria in developing areas.  相似文献   

5.
Most commercial probiotic products intended for pharmaceutical applications consist of combinations of probiotic strains and are available in various forms. The development of co‐culture fermentation conditions to produce probiotics with the correct proportion of viable microorganisms would reduce multiple operations and the associated costs. The aim of this study was to develop a fermentation medium and process to achieve biomass comprising the desired proportion of two probiotic strains in co‐culture. Initially, a quantification medium was developed, and the method was optimized to allow the quantification of each strain's biomass in a mixture. The specific growth rates of Lactobacillus delbrueckii spp. bulgaricus and Lactobacillus plantarum were determined in media with different carbon sources. The inoculum volume was optimized to achieve equal proportion of biomass in co‐culture fermentation in test tubes. Next, fermentation was carried out in a 3‐L bioreactor. A biomass concentration of 2.06 g/L, with L. delbrueckii spp. bulgaricus and L. plantarum in the ratio of 47%:53% (by weight), was achieved with concomitant production of 12.69 g/L of lactic acid in 14 h. The results show that with careful manipulation of process conditions, it is possible to achieve the desired proportion of individual strains in the final biomass produced by co‐culture fermentation. This process may serve as a model to produce multistrain probiotic drugs at industrial scale.  相似文献   

6.

NIR spectroscopy is a non-destructive tool for in-situ, on-line bioprocess monitoring. One of its most frequent applications is the determination of metabolites during cultivation, especially glucose. Previous studies have usually investigated the applicability of Near Infrared (NIR) spectroscopy at one bioreactor scale but the effect of scale up was not explored. In this study, the complete scale up from shake flask (1 L) through 20 L, 100 L and 1000 L up to 5000 L bioreactor volume level was monitored with on-line NIR spectroscopy. The differences between runs and scales were examined using principal component analysis. The bioreactor runs were relatively similar regardless of scales but the shake flasks differed strongly from bioreactor runs. The glucose concentration throughout five 5000 L scale bioreactor runs were predicted by partial least squares regression models that were based on pre-processed spectra of bioreactor runs and combinations of them. The model that produced the lowest error of prediction (4.18 mM on a 29 mM concentration range) for all five runs in the prediction set was based on the combination of 20 L and 100 L data. This result demonstrated the capabilities and the limitations of an NIR system for glucose monitoring in mammalian cell cultivations.

  相似文献   

7.
The objective of this study was to evaluate the efficiency of probiotics (Lactobacillus plantarum and Bacillus coagulans) against mercury-induced toxicity using a rat model. Mercury (Hg) is a widespread heavy metal and was shown to be associated with various diseases. Forty-eight adult male Wistar rats were randomly divided into six groups (control, mercury-only, each probiotic-only, and mercury plus each probiotic group). Hg-treated groups received 10 ppm mercuric chloride, and probiotic groups were administrated 1 × 109 CFU of probiotics daily for 48 days. Levels of mercury were determined using cold vapor technique, and some biochemical factors (list like glutathione peroxidase (GPx), superoxide dismutase (SOD), creatinine, urea, bilirubin, alanine transaminase (ALT), and aspartate transaminase (AST)) were measured to evaluate changes in oxidative stress. Oral administration of either probiotic was found to provide significant protection against mercury toxicity by decreasing the mercury level in the liver and kidney and preventing alterations in the levels of GPx and SOD. Probiotic treatment generated marked reduction in the levels of creatinine, urea, bilirubin, ALT, and AST indicating the positive influence of the probiotics on the adverse effects of Hg in the body.  相似文献   

8.
Cyclotides are a family of backbone‐cyclized cystine‐knot‐containing macrocyclic peptides from plants that possess extremely interesting biological activities. Suspension cultures of Oldenlandia affinis, a model plant containing cyclotides, were scaled‐up from shake flask to photobioreactor operation in order to produce these plant peptides under controlled conditions. Cell growth was highly dependent on inoculation culture; cell density as well as culture age had an effect on the growth rates and thus affected the kalata B1 productivity of the bioprocess. In a 25 l scale bioreactor the maximum doubling time was about 1.12 days compared to 2.24 days in shake flasks. The accumulation of kalata B1 of 0.09 mg g?1 DW and 0.07–0.10 mg g?1 DW respectively, however, was on a similar level during the corresponding stationary growth phases in both bioreactor and flask processes. An adjustment of cell culture growth via culture preparation and inoculum density to high cyclotide accumulation results in an estimated output during the most productive retardation phase of about 21 mg kalata B1 per day in the 25 l system. This makes the biotechnological cyclotide synthesis under GMP conditions a competitive production tool compared to field cultivation, chemical, and recombinant synthesis in drug discovery for structure analysis and bioactivity assays.  相似文献   

9.
Data were obtained on species diversity of the digestive tract microflora of the Far Eastern trepang Apostychopus japonicus. The probiotic characteristics of microbial isolates were investigated related to their capacity for synthesis of digestive enzymes (amylase, chondroitin sulfatase, chitinase, and alginate lyase). The Pseudomonas stutzeri strain exhibiting high activity of all the investigated enzymes was found to be preferable among the potential probiotics used for cultivation of the Far Eastern trepang. Preparations based on mixed cultures of a Bacillus pumilus strain with high chondroitin sulfatase and chitinase activities with strains of B. coagulans and B. megaterium K13 with high activity of amylases and alginate lyases are also promising.  相似文献   

10.

The broad spectrum of health benefits attributed to probiotics has contributed to a rapid increase in the value of the probiotic market. Probiotic health benefits can be strain specific. Thus, strain-level identification of probiotic strains is of paramount importance to ensure probiotic efficacy. Both Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC (NCIMB 30242) strains have clinically proven health benefits; however, no assays were developed to enable strain-level identification of either of these strains. The objective of this study is to develop strain-specific PCR-based methods for Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC strains, and to validate these assays according to the guidelines for validating qualitative real-time PCR assays. Using RAST (Rapid Annotation using Subsystem Technology), unique sequence regions were identified in the genome sequences of both strains. Probe-based assays were designed and validated for specificity, sensitivity, efficiency, repeatability, and reproducibility. Both assays were specific to target strain with 100% true positive and 0% false positive rates. Reaction efficiency for both assays was in the range of 90 to 108% with R square values > 0.99. Repeatability and reproducibility were evaluated using five samples at three DNA concentrations each and relative standard deviation was < 4% for repeatability and < 8% for reproducibility. Both of the assays developed and validated in this study for the specific identification of Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC strains are specific, sensitive, and precise. These assays can be applied to evaluate and ensure compliance in probiotic products.

  相似文献   

11.
Probiotics have established their efficacy as dietary adjuncts providing benefits to consumers. However, selection of probiotics before incorporation into diet requires close scrutiny in the form of in vitro as well as in vivo tests. Three bacteriocinogenic Bacillus sp., namely, B. licheniformis Me1, B. flexus Hk1, and B. subtilis Bn1 previously isolated from milk, cheese and fermented beans, respectively, were characterized for typical in vitro probiotic criteria. When compared to probiotic Bacillus coagulans, all three cultures were found to possess better acid and bile tolerance. Cultures Me1 and Bn1, except Hk1, showed bile salt hydrolase activity. A marked difference in adhesion to hydrocarbons and auto-aggregation properties from 10–80 and 60–99%, respectively, were observed for the tested cultures. Highest antioxidant activity was measured for culture Hk1 (66.6%), whereas least activity of 53% was observed for culture Bn1. Cultures Me1 and Bn1 were sensitive to all the antibiotics tested, whereas Hk1 and B. coagulans showed resistance to the penicillin group of β-lactum antibiotics. All the tested cultures showed a broad spectrum of activity against food-borne pathogens. In co-cultivation studies, B. licheniformis Me1 completely inhibited the growth of the indicator pathogen Listeria monocytogenes ScottA. Overall, the test cultures exhibiting potential probiotic characteristics, particularly B. licheniformis Me1, can serve as probiotics of commercial interest.  相似文献   

12.

Background  

There are significant differences in the culture conditions between small-scale screenings and large-scale fermentation processes. Production processes are usually conducted in fed-batch cultivation mode with active pH-monitoring and control. In contrast, screening experiments in shake flasks are usually conducted in batch mode without active pH-control, but with high buffer concentrations to prevent excessive pH-drifts. These differences make it difficult to compare results from screening experiments and laboratory and technical scale cultivations and, thus, complicate rational process development. In particular, the pH-value plays an important role in fermentation processes due to the narrow physiological or optimal pH-range of microorganisms. To reduce the differences between the scales and to establish a pH-control in shake flasks, a newly developed easy to use polymer-based controlled-release system is presented in this paper. This system consists of bio-compatible silicone discs embedding the alkaline reagent Na2CO3. Since the sodium carbonate is gradually released from the discs in pre-determined kinetics, it will ultimately compensate the decrease in pH caused by the biological activity of microorganisms.  相似文献   

13.
The production of rifamycins B and SV using glucose as main C-source by Amycolatopsis mediterranei in batch and fed-batch culture was investigated. Fed-batch culture using glucose as mono feeding substrate either in the form of pulse addition, in case of shake flask, or with constant feeding rate, in bioreactor level, proved to be an alternative production system with a significant increase in both volumetric and specific antibiotic production. The maximal concentrations of about 1146 mg/l and 2500 mg/l of rifamycins B and SV, respectively, was obtained in fed-batch culture in bioreactor level under non-oxygen limitation. On the other hand, the rate of rifamycins production was increased from 6.58 to 12.13 mg/l x h for rifamycin B and from 9.47 to 31.83 mg/l x h for rifamycin SV on the bioprocess transfer and improvement from the conventional batch cultivation in shake flask to fed-batch cultivation in stirred tank bioreactor.  相似文献   

14.
Oidium lactis can raise the pH of tomato juice in thin layers to a pH range optimum for sporulation of Bacillus coagulans in 24 hr at 25 C and in 48 hr at 35 C. The percentage of sporulation of B. coagulans was greater in tomato juice where O. lactis had grown than in the thermoacidurans broth. As high as 61.7% sporulation occurs within 24 hr in the tomato juice in which Oidium lactis had grown when this juice was incubated at 52 C. When tomato juice was adjusted to pH 5.0 and B. coagulans or a mixture of O. lactis and the vegetative cells of B. coagulans were added as an inoculum, only in the juice in which O. lactis was growing were spores produced within 72 hr at 35 C.  相似文献   

15.
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.  相似文献   

16.
A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert α-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L−1 verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound α-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum α-terpineol concentration of 1,009 mg L−1 and an average productivity of 8–9 mg L−1 h−1 which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved. M. Pescheck and M. A. Mirata have contributed equally to this work.  相似文献   

17.
18.
A novel milliliter-scale bioreactor equipped with a gas-inducing impeller was developed with oxygen transfer coefficients as high as in laboratory and industrial stirred-tank bioreactors. The bioreactor reaches oxygen transfer coefficients of >0.4 s(-1). Oxygen transfer coefficients of >0.2 s(-1) can be maintained over a range of 8- to 12-mL reaction volume. A reaction block with integrated heat exchangers was developed for 48-mL-scale bioreactors. The block can be closed with a single gas cover spreading sterile process gas from a central inlet into the headspace of all bioreactors. The gas cover simultaneously acts as a sterile barrier, making the reaction block a stand-alone device that represents an alternative to 48 parallel-operated shake flasks on a much smaller footprint. Process control software was developed to control a liquid-handling system for automated sampling, titration of pH, substrate feeding, and a microtiter plate reader for automated atline pH and atline optical density analytics. The liquid-handling parameters for titration agent, feeding solution, and cell samples were optimized to increase data quality. A simple proportional pH-control algorithm and intermittent titration of pH enabled Escherichia coli growth to a dry cell weight of 20.5 g L(-1) in fed-batch cultivation with air aeration. Growth of E. coli at the milliliter scale (10 mL) was shown to be equivalent to laboratory scale (3 L) with regard to growth rate, mu, and biomass yield, Y(XS).  相似文献   

19.
Aims: The objective of this study is to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments and evaluate the effect of pH and dissolved oxygen (DO) on the production of l ‐asparaginase from a newly isolated Serratia marcescens SK‐07 in a batch bioreactor. Methods and Results: Central composite rotatable design (CCRD) was applied to optimize the levels of carbon and nitrogen sources of the medium in shake flask experiments. The optimal levels of l ‐asparagine, glucose, yeast extract and peptone were found to be 4·93, 3·81, 3·65 and 1·47 g l?1, respectively, and maximal l ‐asparaginase production of 25·02 U mg?1 was obtained under these conditions. Among the carbon sources tested, l ‐asparagine was identified to be the most favourable carbon source for enhanced production of l ‐asparaginase. The maximum l ‐asparaginase production of 29·89 U mg?1 was achieved in a batch bioreactor at initial pH of 6·5 (uncontrolled) and DO level of 40% in the culture. Conclusions: We have isolated, screened and identified the potential micro‐organism, S. marcescens, for the production of l ‐asparaginase. An overall 5·55‐fold increase in the production was achieved under optimal levels of carbon and nitrogen sources, DO level and at initial pH of 6·5 (uncontrolled). Significance and Impact of the Study: The experiments illustrate the importance of statistical method for optimization of carbon and nitrogen sources and study the effect of physical process parameters on the production of l ‐asparaginase in shake flask and bioreactor, respectively. This study would be helpful for bioprocess development of bacterial l ‐asparaginase production.  相似文献   

20.
《Genomics》2019,111(4):921-929
Spore forming Bacillus species are widely used as probiotics for human dietary supplements and in animal feeds. However, information on genetic basis of their probiotic action is obscure. Therefore, the present investigation was undertaken to elucidate probiotic traits of B. coagulans HS243 through its genome analysis. Genome mining revealed the presence of an arsenal of marker genes attributed to genuine probiotic traits. In silico analysis of HS243 genome revealed the presence of multi subunit ATPases, ADI pathway genes, chologlycine hydrolase, adhesion proteins for surviving and colonizing harsh gastric transit. HS243 genome harbored vitamin and essential amino acid biosynthetic genes, suggesting the use of HS243 as a nutrient supplement. Bacteriocin producing genes highlighted the disease preventing potential of HS243. Thus, this work established that HS243 possessed the genetic repertoire required for surviving harsh gastric transit and conferring health benefits to the host which were further validated by wet lab evidences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号