首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unicellular alga Prymnesium parvum has been responsible for toxic incidents with severe ecological impacts in many parts of the world, and causes massive fish kills worldwide. Recently the haptophyte microalgae have caused water-bloom (4.3 × 104 cells ml−1) in 6 fish ponds with high conductivity in Hungary, and caused fish mortality with typical symptoms. Toxicity of P. parvum from water samples was quantified by the assay of the influence of its cell-free filtrates on haemolysis (346 ± 42.2) and in fish and daphnia toxicity tests. High amount of proteases in P. parvum containing waterbloom samples were detected with the help of activity gel electrophoresis. The proteases of investigated P. parvum samples (125–18 kDa) showed high gelatinolytic activity and some of them showed sensitivity to EDTA (inhibitors of metalloproteases) and to PMSF (inhibitors of serine proteases).  相似文献   

2.
Prymnesium parvum produces a variety of toxic compounds, which affect other algae, grazers and organisms at higher trophic levels. Here we provide the method for development of a sensitive algal bioassay using a microalgal target, Teleaulax acuta, to measure strain variability in P. parvum toxicity, as well as the temporal stability of both the intracellular and the extracellular lytic compounds of P. parvum. We show high strain variation in toxicities after 3 h incubation with LC50s ranging from 24 to 223 × 103 cells ml−1. Most importantly we prove the necessity of testing physico-chemical properties of P. parvum toxins before attempting to isolate and characterize them. The extracellular toxin in the supernatant is highly unstable, and it loses significant lytic effects after 3 days despite storage at −20 °C and after only 24 h stored at 4 °C. However, when stored at −80 °C, lytic activity is more easily maintained. Reducing oxidation by storing the supernatant with no headspace in the vials significantly slowed loss of activity when stored at 4 °C. We show that the lytic activity of the intracellular toxins, when released by sonication, is not as high as the extracellular toxins, however the stability of the intracellular toxins when kept as a cell pellet at −20 °C is excellent, which proves this is a sufficient storage method for less than 3 months. Our results provide an ecologically appropriate algal bioassay to quantify lytic activity of P. parvum toxins and we have advanced our knowledge of how to handle and store the toxins from P. parvum so as to maintain biologically relevant toxicity.  相似文献   

3.
Cryptosporidium parvum is the second leading cause of persistent diarrhea among children in low-resource settings. This study examined the effect of oregano essential oil (OEO) and carvacrol (CV) on inhibition of C. parvum infectivity in vitro. HCT-8 cells were seeded (1 × 106) in 96-well microtiter plates until confluency. Cell viability and infectivity were assessed by seeding HCT-8 cell monolayers with C. parvum oocysts (1 × 104) in two modalities: 1) 4 h co-culture with bioactive (0–250 μg/mL) followed by washing and incubation (48 h, 37 °C, 5% CO2) in bioactive-free media; and 2) 4 h co-culture of C. parvum oocysts followed by washing and treatment with bioactive (0–250 μg/mL) during 48-h incubation. Cell viability was tested using Live/Dead? assay whereas infectivity was measured using C. parvum-specific antibody staining via immunofluorescence detection. Loss of cell viability was observed starting at 125 μg/mL and 60 μg/mL for OEO and CV, respectively. Neither OEO nor CV modulated the invasion of C. parvum sporozoites in HCT-8 cells. Treatment with bioactive after invasion reduced relative C. parvum infectivity in a dose-dependent manner to 55.6 ± 10.4% and 45.8 ± 4.1% at 60 and 30 μg/mL of OEO and CV, respectively. OEO and CV are potential bioactives to counteract C. parvum infection in children.  相似文献   

4.
We investigated the ability of the ichthyotoxic haptophyte Prymnesium parvum to use sewage-originated nutrients applying stable carbon (C) and nitrogen (N) isotope techniques. P. parvum was cultured under N and phosphorus (P) sufficient and deficient conditions in either sewage effluent-based medium or in a nitrate- and phosphate-based control. Cell densities and toxicities were monitored and stable carbon N isotopes signatures (δ13C and δ15N) of P. parvum and the sewage effluent analysed. Nitrogen and P sufficient cultures achieved the highest biomass followed by P and N deficient cultures, regardless of sewage effluent additions. The P deficient cultures with sewage effluent had higher toxicity, estimated as haemolytic activity (9.4 ± 0 × 10?5 mg Saponin equiv. cell?1) compared to the P deficient control and to all N deficient and NP sufficient cultures. Nutrient deficient conditions had no effect on the cell δ15N, but a decreasing effect on δ13C in the inorganic N deficient treatment. Growth in sewage-based media was followed by a substantial increase in the cell δ15N (10.4–16.1‰) compared to the control treatments (2.4–4.9‰), showing that P. parvum is capable of direct use of sewage-originated N, inorganic as well as organic. Uptake of terrestrial derived C in the sewage treatments was confirmed by a decrease in cell δ13C, implying that P. parvum is able to utilize organic nutrients in sewage effluent.  相似文献   

5.
Enzymes in the newly described rumen bacterium, Treponema zioleckii strain kT, capable of digesting Timothy grass fructan, inulin, and sucrose were identified and characterized. Two specific endolevanases and one non-specific β-fructofuranosidase were found in a cell-free extract. The molecular weight of the endolevanases were estimated to be 60 and 36 kDa, whereas that of β-fructofuranosidase, 87 kDa. The former of the specific enzymes was associated with the outer membrane, while the latter and the non-specific β-fructofuranosidase, with the periplasm or cytosol. The Km and Vmax for Timothy grass fructan degradation by endolevanase were 0.27% and 15.75 μM fructose equivalents × mg protein?1 × min?1, those for sucrose and inulin digestion by β-fructofuranosidase were 1.35 × 10?3 M and 1.73 μM hexoses × mg protein?1 × min?1 and 1.77% and 1.83 μM hexoses × mg protein?1 × min?1, respectively.  相似文献   

6.
The uptake rates of different nitrogen (N) forms (NO3, urea, and the amino acids glycine and glutamic acid) by N-deficient, laboratory-grown cells of the mixotrophic haptophyte, Prymnesium parvum, were measured and the preference by the cells for the different forms determined. Cellular N uptake rates (ρcell, fmol N cell−1 h−1) were measured using 15N-labeled N substrates. P. parvum showed high preference for the tested amino acids, in particular glutamic acid, over urea and NO3 under the culture nutrient conditions. However, extrapolating these rates to Baltic Seawater summer conditions, P. parvum would be expected to show higher uptake rates of NO3 and the amino acids relative to urea because of the difference in average concentrations of these substrates. A high uptake rate of glutamic acid at low substrate concentrations suggests that this substrate is likely used through extracellular enzymes. Nitrate, urea and glycine, on the other hand, showed a non-saturating uptake over the tested substrate concentration (1–40 μM-N for NO3 and urea, 0.5–10 μM-N for glycine), indicating slower membrane-transport rates for these substrates.  相似文献   

7.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

8.
The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg+ and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μg ml?1 for 33erg+ and 128 μg ml?1 for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg+ and its mutant erg-2 were 12.5 °C and 11 °C, respectively. After 128 μg ml?1 primycin treatment, these values increased to 17.5 °C and 16 °C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg+ and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane “rigidizing” effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.  相似文献   

9.
《Aquatic Botany》2004,79(2):111-124
The main aim of this study was to investigate if the charophyte species Chara baltica, Chara canescens (two populations from the Baltic Sea (BS) and the Gulf of Korinth, Greece (GK)), and Lamprothamnium papulosum exhibit different acclimation capacities to irradiance. Growth, photosynthesis and pigment content were examined in the laboratory under six irradiance conditions (35–500 μmol photons m−2 s−1). Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼10 mg fresh weight (FW)) up to 70 μmol photons m−2 s−1 (∼20 mg FW) in C. baltica, from 35 μmol photons m−2 s−1 (∼15 mg FW) up to 380 μmol photons m−2 s−1 (∼145 mg FW) in C. canescens (BS), and up to the highest growth irradiance in algae of L. papulosum (35 μmol: ∼5 mg FW; 500 μmol: ∼20 mg FW). The species were tested for their ability to acclimate to different growth irradiances (Eg) by calculating Pmax (maximum photosynthesis rate at saturating irradiances), α (the efficiency of light utilization at limiting irradiance), and Ek (the light saturation point of photosynthesis, Pmax/α). All species exhibited increasing Pmax with increasing Eg. Whereas both populations of C. canescens increased α with increasing Eg, L. papulosum and C. baltica did not acclimate α at all. Ek, the irradiance at which photosynthesis ceased to be light-limited, was constant for all Chara species within the range of irradiances tested. Chl a/Chl b ratios of all species were constant over the whole range of Eg. Chl a/carotenoid ratios were constant in C. baltica, whereas Chl a/carotenoid ratios in L. papulosum and C. canescens (BS) decreased from 250 and 70 μmol photons m−2 s−1 upwards, respectively. Pigmentation analysis showed that Chl a/carotenoid acclimation was mainly caused by species-specific capacity to raise the content of lutein and carotene (C. canescens (BS), C. canescens (GK)) and xanthophyll cycle pigments (XCP; L. papulosum). The non-photochemical quenching (NPQ) capacities of L. papulosum, C. canescens (BS), and C. canescens (GK) were dependent from preacclimation status of algae, whereas NPQ of C. baltica was independent from growth irradiance.Our results indicate that C. baltica and C. canescens (BS) were light saturated within the chosen irradiances, whereas C. canescens (GK) and L. papulosum did not reach their limits of high-light acclimation. The photosynthetic pigments lutein, α- and β-carotene are suggested to act as photo-protective pigments in L. papulosum and C. canescens.  相似文献   

10.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

11.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

12.
An unarmored dinoflagellate bloom of Cochlodinium geminatum (Schütt) Schütt has been identified in the Pearl River Estuary, South China Sea during the severe dry season, from late October to early November, 2009, when temperature and salinity ranged between 20.0–27.2 °C and 10.6–33.4, respectively. Light and scanning electron microscopy were used to identify the characteristics of C. geminatum and provided the clear morphological structure for this species. The organism was primarily found in chains of two cells or single cell, and no longer chains were observed. Cells were irregularly spherical or slightly dorso-ventrally, with size ranged between 28 and 36 μm and longer than wide. A large nucleus in the center with numerous golden chloroplasts was present, and the cingulum made 1.5 turns around the cell. The concentration of C. geminatum ranged from 102 to greater than 107 cells l−1 during the bloom period. Nutrient concentration ranges during the bloom were 1.29–81.00 μM NO3, 0.14–12.14 μM NO2, 0.21–6.29 μM NH4, 0.23–6.26 μM PO4 and 3.29–171.43 μM SiO3, respectively. Total biomass expressed in terms of chlorophyll a ranged from 2.44 to 135.45 μg l−1, with an average 19.9 μg l−1 in surface water throughout the PRE. Two main clusters corresponding to the water sectors were defined with multivariate analysis (cluster and nMDS). Based on the composition and abundance of phytoplankton, spatial variations were observed at a significant level (ANOSIM, R = 0.44, P < 0.01). Although the pairwise correlation analysis detected no significant effect of any single environmental variable on the abundance of C. geminatum, the multivariate analysis (BIO-ENV) between biotic and abiotic variables resulted in the best variables combination with all measured factors involved (temperature, salinity, turbidity, NO3, NO2, NH4, PO4 and SiO3) which showed a combined effect during the bloom of C. geminatum in the Pearl River Estuary (ρw = 0.477).  相似文献   

13.
《Cryobiology》2009,58(3):286-291
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

14.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

15.
《Ecological Indicators》2008,8(5):454-461
In order to evaluate the dispersal pattern of airborne fluoride emissions, from a single source in the city of Ouro Preto, Brazil, the fluoride impact on some herbaceous plant species was studied using the plants as passive bioindicators. Foliar fluoride contents of eight species collected at different distances from an aluminium smelter were analyzed. The plant species were: Baccaharis dracunculifolia, Bidens pilosa, Borreria verticillata, Calopogonium mucunoides, Erigeron bonariensis, Hedychium coronarium, Ipomoea purpurea and Ipomoea cairica. In all species the fluoride accumulation decreased exponentially with the distance from the emission source. There was specific and distinct variation in fluoride accumulation among the species, a group of high-accumulator species (B. dracunculifolia and Bidens pilosa) and a group of low-accumulator species (I. cairica, H. coronarium and Borreria verticillata). C. mucunoides and E. bonariensis occupied an intermediate position. There was a pattern of plant contamination response during the periods analyzed. The plants nearest to the emission source, between 0.4 km northwest and 1.1 km east, showed fluoride contamination traits in leaves reaching values between 100 and 500 μg g−1. Moreover, fluoride contents higher than 1000 μg g−1 were found in these plants. At the most distant stations, situated 2.9 km northwest and 6 km east from the factory, the fluoride content of the dry matter was less than 10 μg g−1 showing that plants at those distances were submitted to minimum contamination. There were different patterns of tolerance among the species analyzed. While B. dracunculifolia accumulated fluoride up to 1500 μg g−1 in dry matter without any signs of injury, Borreria verticillata showed severe necrosis in leaves, but the fluoride content found was not higher than 120 μg g−1.  相似文献   

16.
2,4-Dichlorophenoxyacetic acid (2,4-D) is an agricultural contaminant found in rural ground water. It remains to be determined whether neither 2,4-D poses environmental risks, nor is the mechanism of toxicity known at the molecular level. To evaluate the potential ecological risk of 2,4-D, we assessed the biological parameters including the survival rate, adult sex ratio of emerged adults, and mouthpart deformities in Chironomus riparius after long-term exposure to 2,4-D. The larvae were treated with 0.1, 1 or, 10 μg L? 1 of 2,4-D for short- and long-term exposure periods. The sex ratio was changed in C. riparius exposed to only 10 μg L? 1 of 2,4-D, whereas mouthpart deformities were observed as significantly higher in C. riparius exposed to 0.1 μg L? 1 of 2,4-D. Survival rates were not significantly affected by 2,4-D. Furthermore, we evaluated the molecular and biochemical responses of biomarker genes such as gene expression of heat shock proteins (HSPs), ferritins and glutathione S-transferases (GSTs) in C. riparius exposed to 2,4-D for 24 h. The expressions of HSP70, HSP40, HSP90 and GST levels in C. riparius were significantly increased after exposure to a 10 μg L? 1 concentration of 2,4-D, whereas ferritin heavy and light chain gene expressions were significantly increased at all concentrations of 2,4-D exposure. Finally, these results may provide an important contribution to our understanding of the toxicology of 2,4-D herbicide in C. riparius. Moreover, the 2,4-D-mediated gene expressions may be generated by 2,4-D is the causative effects on most probable cause of the observed alterations. These biological, molecular and morphological parameters and the measured parameters can be used to monitor 2,4-D toxicity in an aquatic environment.  相似文献   

17.
18.
19.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

20.
d-Phenylalanine is capable of trapping reactive oxygen species (ROS) and reactive nitrogen species (RNS) by forming three major hydroxylation (o-, m-, p-tyrosine) and two major nitration products (nitrophenylalanine, nitrotyrosine). Here, we show how a method for the analysis of these phenylalanine derivatives was established using isocratic HPLC (Nucleosil120, C18 column) coupled with photodiode array detection and validated for cell-free in vitro and in vivo determination of radical formation. An ideal separation was achieved using a mobile phase consisting of 5% acetonitrile, 50 mM KH2PO4, pH 3.0, a column temperature of 35 °C and a flow rate of 1.0 mL/min. Limits of detection were in the range of 5–100 nM. Linearity was given within 5 nM–100 μM (correlation coefficient >0.999). Retention times as well as peak heights exhibited a high precision (RSD: ≤0.1% and <1.5%, respectively). The feasibility of d-phenylalanine for ROS/RNS measurement was demonstrated in a cell-free in vitro assay using peroxynitrite and by analysis of brain samples of mice treated with the dopaminergic neurotoxin 6-hydroxydopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号