首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
18S rRNA genes (SSU rDNA) of five newly sequenced species were used as molecular markers to infer phylogenetic relationships within the euglenoids. Two members of the order Euglenales ( Lepocinclis ovata Playfair , Phacus similis Christen), two of the order Eutreptiales ( Distigma proteus Ehrenberg, , D. curvata Pringsheim) and Gyropaigne lefévrei Bourelly et Georges of the order Rhabdomonadales were used in parsimony, maximum likelihood, and distance analyses. All trees derived from SSU rRNA data strongly supported the monophyletic origin of the Euglenozoa, with kinetoplastids as sister clade to the euglenoids and Petalomonas cantuscygni Cann et Pennick diverging at the base of the monophyletic euglenoid lineage. The data also supported the theory that phagotrophic euglenoids arose prior to osmotrophs and phototrophs. A lineage of Peranema trichophorum Ehrenberg and all sequenced Euglenales formed a sister clade to the osmotrophs. This suggests that the evolution of phototrophy within the euglenoids radiated from a single event.  相似文献   

2.
Most eukaryote molecular phylogenies have been based on small-subunit ribosomal RNA as its database includes the most species, but serious problems have been encountered that can make these trees misleading. More recent studies using concatenated protein sequences have increased the data per organism, reducing misleading signals from a single sequence, but taxon sampling is limited. To increase the database of protein-coding genes we sequenced the cytosolic form of heat-shock protein Hsp90 from a broad variety of previously unsampled eukaryote groups: protozoan flagellates (phyla Choanozoa, Apusozoa, Cercozoa) and all three groups of chromists (Cryptophyta, Heterokonta, Haptophyta). Gamma-corrected distance trees robustly show three groups: bacterial sequences are sister to all eukaryote sequences, which are cleanly subdivided into the cytosolic sequences and a clade comprising the chloroplast and endoplasmic reticulum (ER) Hsp90 sequences. The eukaryote cytosolic sequences comprise a robust opisthokont clade (animals/Choanozoa/fungi), a bikont clade, and an amoebozoan branch. However their topology is not robust. When the cytosolic sequences are rooted using only the ER/chloroplast clade as outgroup the amoebozoan Dictyostelium is sister to the opisthokonts forming a unikont clade in the distance tree. Congruence of this tree with that for concatenated mitochondrial proteins suggests that the root of the eukaryote tree is between unikonts and bikonts. Gamma-corrected maximum likelihood analyses of cytosolic sequences alone (519 unambiguously aligned amino acid positions) show bikonts as a clade, as do least-squares distance trees, but with other distance methods and parsimony the sole amoebozoan species branches weakly within bikonts. Choanozoa are clearly sisters to animals. Some major bikont groups (e.g. green plants, alveolates, Euglenozoa) are consistently recovered, but others (e.g. discicristates, chromalveolates) appear only in some trees; the backbone of the bikont subtree is not resolved, the position of groups represented only by single sequences being particularly unclear. Although single-gene trees will probably never resolve these uncertainties, the congruence of Hsp90 trees with other data is greater than for most other molecules and further taxon sampling of this molecule is recommended.  相似文献   

3.
Keelungia pulex nov. gen. et nov. sp. is described from coastal waters of NE Taiwan. The new species is heterotrophic and feeds on bacteria. Cells are oblong-ovoid, biflagellate and glide along the sides of the flask. Each cell is approximately 8–11 μm long, and one of the smallest euglenoid flagellates presently known. Keelungia lacks pellicular plates and in this respect resembles diplonemids and Symbiontida, which are thought to be among the basal groups of Euglenozoa. SEM showed the presence of 10 evenly spaced longitudinal striae in the cell surface, but the striae are difficult to see in the light microscope. TEM showed each stria to comprise a double set of very low longitudinal ridges separated by a shallow furrow, and supported by ca 5 microtubules beneath the plasmalemma, unlike the situation in diplonemids and Symbiontida. The cell surface was further subtended by an extensive system of rough cisternae of endoplasmic reticulum. Keelungia pulex is phylogenetically related to species of Ploeotia and to Lentomonas applanata, but differs in details of the feeding apparatus and in the absence of pellicular plates. Sequencing of SSU rDNA indicates that Ploeotia, Keelungia and Entosiphon form a clade near the base of the euglenoid phylogenetic tree.  相似文献   

4.
The phylogeny of phagotrophic euglenids is widely based on nuclear small subunit ribosomal DNA (18S rDNA) sequence data, but most analyses suffer from weakness in statistical support regarding the “connecting backbone” between monophyletic clades. Moreover, the position of Entosiphon has remained unclear. Testing the 18S rDNA capability for a phylogeny of phagotrophic euglenids, we isolated sequences of Peranema sp. and Ploeotia edaphica and utilized secondary structure data as a prerequisite for recognition of homologous positions. We found a unique, clade-specific nucleotide substitution in the deduced 18S rDNA helix 44. Since our 18S rDNA phylogenies could only in part resolve positions of phagotrophic lineages, but did not verify that of Entosiphon, we investigated the phagotrophic key taxa Peranema trichophorum, Petalomonas cantuscygni, Ploeotia costata, and Entosiphon sulcatum ultrastructurally. Additionally, we explored the presence or absence of the euglenid reserve carbohydrate paramylon by specific staining with monoclonal anti-β-1,3-glucan antibodies. Paramylon was found to be clearly present in P. trichophorum and E. sulcatum, but was absent in Pt. cantuscygni and Pl. costata. Combined results of our molecular, ultrastructural, and immunocytochemical investigations suggest that Entosiphon sulcatum is the sister taxon of a monophyletic euglenid crown clade, characterized by a helical pellicle, which we propose to rename. This phylogenetic affiliation is confirmed by a clade-specific primary absence of the unique nucleotide substitution in helix 44 and by the common presence of paramylon.  相似文献   

5.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

6.
Hoppenrath M  Leander BS 《PloS one》2010,5(10):e13220

Background

Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA) sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1) most sites are relatively conserved and (2) there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90) will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages.

Methodology/Principal Findings

We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved.

Conclusions/Significance

The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent evolutionary past. Nonetheless, the more comprehensive analysis of Hsp90 sequences enabled us to infer phylogenetic interrelationships of dinoflagellates more rigorously. For instance, the phylogenetic position of Noctiluca, which possesses several unusual features, was incongruent with previous phylogenetic studies. Therefore, the generation of additional dinoflagellate Hsp90 sequences is expected to refine the stem group of athecate species observed here and contribute to future multi-gene analyses of dinoflagellate interrelationships.  相似文献   

7.
Phylogenetic relationships of seven isolates of the genus Haptoglossa parasitic on terrestrial nematodes within the Peronosporomycetes were analyzed using 18S rDNA sequence data with 21 peronosporomycetes, 2 marine stramenopilous flagellates, and 2 hyphochytridiomycetes. The marine stramenopilous flagellates and hyphochytridiomycetes were used as the outgroup. All Haptoglossa isolates formed a monophyletic clade and clustered with the marine genus Eurychasma. The clade of Haptoglossa and Eurychasma formed a sister-group to the clade that consisted of all other peronosporomycetes. These results suggest that the genus Haptoglossa and other terrestrial peronosporomycetes included in the two subclasses, the Saprolegniomycetidae and the Peronosporomycetidae, might have originally adapted to the terrestrial environment individually. In the maximum-likelihood (ML) analysis, the Haptoglossa clade was divided into three subclades, one aplanosporic species clade and two zoosporic species clades. Phylogenetic analyses of combined 18S rDNA and cox2 genes among five species of Haptoglossa supported the results of the ML analysis using 18S rDNA and suggested that zoosporic species may be separated into two lineages. This topology of the analysis may suggest that aplanosporic species diverged from zoosporic species.  相似文献   

8.
KW-2478 is a promising anti-cancer lead compound targeting to the molecular chaperone heat shock protein 90 N (Hsp90N). Absence of complex crystal structure of Hsp90N-KW-2478, however, hampered further structure optimization of KW-2478 and understanding on the molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90N-KW-2478 was determined by X-ray diffraction (XRD, resolution limit: 1.59 Å; PDB ID: 6LT8) and their molecular interaction was analyzed in detail, which suggested that KW-2478 perfectly bound in the N-terminal ATP-binding pocket of Hsp90 to disable its molecular chaperone function, therefore suppressed or killed cancer cells. The results from thermal shift assay (TSA, ΔTm, 18.82 ± 0.51 °C) and isothermal titration calorimetry (ITC, Kd, 7.30 ± 2.20 nM) suggested that there is an intense binding force and favorable thermodynamic changes during the process of KW-2478 binding with Hsp90N. Additionally, KW-2478 exhibited favorable anti-NSCLC activity in vitro, as it inhibited cell proliferation (IC50, 8.16 μM for A549; 14.29 μM for H1975) and migration, induced cell cycle arrest and promoted apoptosis. Thirty-six novel KW-2478 derivatives were designed, based on the complex crystal structure and molecular interaction analysis of Hsp90N-KW-2478 complex. Among them, twenty-two derivatives exhibited increased binding force with Hsp90N evaluated by molecular docking assay. The results would provide new guidance for anti-NSCLC new drug development based on the lead compound KW-2478.  相似文献   

9.
Noctiluca scintillans (Macartney) Kofoid et Swezy, 1921 is an unarmoured heterotrophic dinoflagellate with a global distribution, and has been considered as one of the ancestral taxa among dinoflagellates. Recently, 18S rDNA, actin, α-, β-tubulin, and Hsp90-based phylogenies have shown the basal position of the noctilucids. However, the relationships of dinoflagellates in the basal lineages are still controversial. Although the nuclear rDNA (e.g. 18S, ITS-5.8S, and 28S) contains much genetic information, DNA sequences of N. scintillans rDNA molecules were insufficiently characterized as yet. Here the author sequenced a long-range nuclear rDNA, spanning from the 18S to the D5 region of the 28S rDNA, of N. scintillans. The present N. scintillans had a nearly identical genotype (>99.0% similarity) compared to other Noctiluca sequences from different geographic origins. Nucleotide divergence in the partial 28S rDNA was significantly high (p<0.05) as compared to the 18S rDNA, demonstrating that the information from 28S rDNA is more variable. The 28S rDNA phylogeny of 17 selected dinoflagellates, two perkinsids, and two apicomplexans as outgroups showed that N. scintillans and Oxyrrhis marina formed a clade that diverged separately from core dinoflagellates.  相似文献   

10.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

11.
Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation.See research article http://wwww.biomedcentral.com/1471-2148/12/25  相似文献   

12.
Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90''s role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90''s role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely new role for Hsp90 in mediating resistance to echinocandins, and demonstrate that targeting Hsp90 provides a promising therapeutic strategy for the treatment of life-threatening fungal disease.  相似文献   

13.
The morphology and infraciliature of two stichotrichid ciliates, Gastrostyla pulchra(Perejaslawzewa 1886) Kahl, 1932 and Hemigastrostyla enigmatica(Dragesco and Dragesco-Kernéis 1986) Song & Wilbert, 1997, collected from marine and brackish sediments, were investigated by using living observations and protargol impregnations. Both 18S and 28S rRNA genes of these two species were sequenced. The 18S rDNA show high similarities (98.4%-99.7%) among populations of each species. There is about 94% similarity in 18S rDNA genes between G. pulchra and Gastrostyla steinii, the type species of the genus, which has been confirmed to be an oxytrichid by previous studies. In the phylogenetic trees of 18S, 28S, and combined 18S and 28S rDNA, both G. pulchra and H. enigmatica are consistently placed outside the well-established oxytrichid clade. Based on our analyses and previous ontogenetic data, we conclude that these two species may represent some lower groups in the subclass Stichotrichia, and that G. pulchra should represent a new genus, Protogastrostyla n. g. This new genus, which is morphologically similar to Gastrostyla, differs in its morphogenesis: the apical part of the old AZM is retained combining with the newly built membranelles that develop from the proter's oral primordium; the primary primordia of the dorsal kinety; and marginal primordia commence de novo without a definite contribution from the old structure.  相似文献   

14.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

15.
《Journal of molecular biology》2019,431(15):2729-2746
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90–Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70–Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein–protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.  相似文献   

16.
Environmental rDNA sequencing has revealed many novel heterokont clades of unknown morphology. We describe a new marine heterotrophic heterokont flagellate, Incisomonas marina, which most unusually lacks an anterior cilium. It glides and swims with its cilium trailing behind, but is predominantly sedentary on the substratum, with or without a cilium. 18S rDNA sequence phylogeny groups Incisomonas strongly within clade MAST-3; with others it forms a robust sister clade to Solenicola, here grouped with it as new order Uniciliatida, placed within new class Nanomonadea encompassing MAST-3. Our comprehensive maximum likelihood heterokont phylogeny shows Nanomonadea as sister to MAST-12 plus Opalinata within Opalozoa, and that Actinophryida are not Opalozoa (previously suggested by distance trees), but highly modified raphidomonads, arguably related to Heliorapha (formerly Ciliophrys) azurina gen., comb. n. We discuss evolution of Actinophryida from photosynthetic raphidophytes. Clades MAST-4,6-11 form one early-branching bigyran clade. Olisthodiscus weakly groups with Hypogyristea not Raphidomonadea. Phylogenetic analysis shows that MAST-13 is all Bicosoeca. Some gliding uniciliates similar to Incisomonas marina seem to have been misclassified: therefore we establish Incisomonas devorata comb. n. for Rigidomastix devoratum, revise the genus Rigidomastix, transfer Clautriavia parva to Kiitoksia. We make 17 new familes (13 heterokont (three algal), two cercozoan, two amoebozoan).  相似文献   

17.
The pellicle of Euglena has been investigated by anoptral and phase contrast light microscopy, and by electron microscopy of osmium-fixed, Epon-embedded, lead-stained sections and of carbon/platinum replicas.

Observations on living cells show that the pellicular striatiors of Euglena spirogyra trace a left-handed (S) helix in a majority of cells, and a right-handed (Z) helix in only 5 to 30% of the cells in any one culture. All cells of E. spirogyra var. fusca have a left-handed (S) helix. Ornamentation on the pellicle takes the form of rows of knobs in various patterns. The living pellicle can be dissociated into long flat strips.

Electron microscopy shows that each pellicular strip has an elaborate cross-sectional shape, features of which are accessory teeth and ribs and a continuous ridge which articulates in a groove running along the edge of the next strip. The strips can move against one another, presumably by the ridges sliding in the grooves, and it is suggested that the joints might be lubricated by mucilage supplied from the helically disposed muciferous bodies. One single and one pair of fibrils or tubes, 200–250 Å in diameter, are regularly arranged parallel to each pellicular strip. A continuous tripartite plasmalemma, 80–100 Å thick, lies externally to the strips; external to this membrane lie the pellicular knobs. Each cell has from 35 to 45 pellicular strips, reducing to a few at the posterior end of the cell by successive fusions. Similar fusions occur at the anterior end of the cell, mainly within the canal.

These observations are compared with those made on the euglenoid pellicle by previous authors, and the following problems are discussed: direction of helix; the nature and cause of ornamentation; euglenoid movement with reference to fibrils, cytoplasmic flow, pellicle flexibility and the proteinaceous nature of the pellicle; helical and bilateral symmetry in the cell; and cet growth and division.  相似文献   

18.
Powdery mildew fungi found on leaves, shoots, and stems of Phyllanthus acidus, P. amarus, and P. reticulatus proved to be a fungus having morphology unique in the Erysiphaceae. Light micrographs of a new germination pattern are added to discuss differences to other four germination patterns of the powdery mildews. The rDNA sequences (28S and 18S regions) of the fungi found on Phyllanthus spp. form a distinct monophyletic clade strongly supported by bootstrap (100%) in 18S + 28S trees, which indicates that the fungus is an isolated fungal group among the Erysiphaceae in tribal level. Because we cannot find the teleomorphic state of this fungus, a new subgenus Microidium of anamorphic genus Oidium is proposed to accommodate this organism.  相似文献   

19.
The Saccharomyces cerevisiae SBA1 gene was cloned by PCR amplification from yeast genomic DNA following its identification as encoding an ortholog of human p23, an Hsp90 cochaperone. The SBA1 gene product is constitutively expressed and nonessential, although a disruption mutant grew more slowly than the wild type at both 18 and 37°C. A double deletion of SBA1 and STI1, encoding an Hsp90 cochaperone, displayed synthetic growth defects. Affinity isolation of histidine-tagged Sba1p (Sba1His6) after expression in yeast led to coisolation of Hsp90 and the cyclophilin homolog Cpr6. Using an in vitro assembly assay, purified Sba1His6 bound to Hsp90 only in the presence of adenosine 5′-O-(3-thiotriphosphate) or adenyl-imidodiphosphate. Furthermore, interaction between purified Sba1His6 and Hsp90 in yeast extracts was inhibited by the benzoquinoid ansamycins geldanamycin and macbecin. The in vitro assay was also used to identify residues in Hsp90 that are important for complex formation with Sba1His6, and residues in both the N-terminal nucleotide binding domain and C-terminal half were characterized. In vivo analysis of known Hsp90 substrate proteins revealed that Sba1 loss of function had only a mild effect on the activity of the tyrosine kinase v-Src and steroid hormone receptors.  相似文献   

20.
Molecular chaperones Hsp70 and Hsp90 are in part responsible for maintaining the viability of cells by facilitating the folding and maturation process of many essential client proteins. The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) has been shown in vitro and in vivo to associate with Hsp70 and Hsp90 and ubiquitinate them, thus targeting them to the proteasome for degradation. Here, we study one facet of this CHIP-mediated turnover by determining the lysine residues on human Hsp70 and Hsp90 ubiquitinated by CHIP. We performed in vitro ubiquitination reactions of the chaperones using purified components and analyzed the samples by tandem mass spectrometry to identify modified lysine residues. Six such ubiquitination sites were identified on Hsp70 (K325, K451, K524, K526, K559, and K561) and 13 ubiquitinated lysine residues were found on Hsp90 (K107, K204, K219, K275, K284, K347, K399, K477, K481, K538, K550, K607, and K623). We mapped the ubiquitination sites on homology models of almost full-length human Hsp70 and Hsp90, which were found to cluster in certain regions of the structures. Furthermore, we determined that CHIP forms polyubiquitin chains on Hsp70 and Hsp90 linked via K6, K11, K48, and K63. These findings clarify the mode of ubiquitination of Hsp70 and Hsp90 by CHIP, which ultimately leads to their degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号