首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A cDNA clone that reveals a high level of polymorphism between wheat varieties was isolated from a wheat cDNA library. When hybridized to DraI-, EcoRV- and HindIII digested DNA this clone, gbx3832, enables us to distinguish 42 different patterns among 48 varieties: 37 varieties are clearly identified, the remaining 11 are divided into five groups. Base-sequence analysis of the clone reveals 72–74% sequence identity to mRNAs encoding thaumatin-like proteins from different cereals. Received: 27 January 1997 / Accepted: 18 April 1997  相似文献   

2.
 The Ph1 (pairing homoeologous) gene is the major factor that determines the diploid-like chromosome behavior of polyploid wheat. This gene, which is located on the long arm of chromosome 5B (5BL), suppresses homoeologous pairing at meiosis while allowing exclusive homologous pairing. In an effort to tag the specific chromosomal region where this gene is located, we have previously microdissected chromosome arm 5BL from bread wheat and produced a plasmid library by random PCR amplification and cloning. In this work we isolated from this library a 5BL-specific probe, WPG90, and mapped it within the interstitial deleted chromosome fragments carrying Ph1 in common and durum wheat. A PCR assay of Ph1 based on WPG90 was developed that allows an easy identification of homozygous genotypes deficient for this gene. Received: 19 June 1996 / Accepted: 18 October 1996  相似文献   

3.
Detection of DNA sequence polymorphisms among wheat varieties   总被引:7,自引:0,他引:7  
Summary A DNA marker detection strategy that allows the rapid, efficient resolution of high levels of polymorphism among closely related lines of common wheat (Triticum aestivum) has been developed to circumvent the apparent lack of restriction fragment length polymorphism in many important self-pollinated crop species. The technique of randomly amplified polymorphic DNA (RAPD) was combined with a denaturing gradient gel electrophoresis system (DGGE) to explore DNA sequence polymorphisms among different genotypes of wheat. Of the 65 primer combinations used for the polymerase chain reaction (PCR) amplifications, over 38% of them produced readily detectable and reproducible DNA polymorphisms between a spring wheat line, SO852, and a winter wheat variety, Clark. A high level of polymorphism was observed among a number of commercial varieties and breeding lines of wheat. This procedure was also used to detect polymorphisms in a recombinant inbred population to test the feasibility of its application in genome mapping. This DNA polymorphism detection system provides an opportunity for pedigree analysis and fingerprinting of developed wheat lines as well as construction of a high density genetic map of wheat. Without the need for 32P and sophisticated DNA extraction procedures, this approach should make it feasible to utilize marker-based selection in a plant breeding program.  相似文献   

4.
Summary To investigate the use of RFLP analysis in the Triticeae, a set of low copy number probes has been isolated from a wheat cDNA library. The probes identify each of the 14 homoeologous chromosome arms of wheat as determined by analysis of DNA fragments hybridizing to the probes in aneuploid lines of Chinese Spring. These probes can be used in RFLP analyses both for the assignment of homoeology of alien chromosomes or arms added to wheat, and for the determination of chromosome dosage in wheat aneuploids. Different chromosomes from various Triticeae species can therefore be followed in a wheat genetic background using a single technique. The potential uses of the set in facilitating the transfer of alien segments into wheat are outlined.  相似文献   

5.
Beekeeping has been a highly valued industry in Taiwan. As a result, many subspecies of Apis mellifera have been introduced to Taiwan since 1911, leading to the hybridization of different subspecies. In order to know the matrilineal origins of Taiwan A. mellifera, a total of 280 samples collected from 33 apiaries throughout the island were examined. Using PCR-RFLP of four mitochondrial gene fragments, i.e., the non-coding region between tRNAleu and cytochrome c oxidase subunit II (intergenic tRNAleu-COII), cytochrome b (Cyt b), large subunit rRNA (Ls rRNA) and cytochrome c oxidase subunit I (COI), we only found two haplotypes exist in 280 samples. Haplotypes ababa and bbbaa account for 87% of these Western bees belonged to the Eastern European (C) lineage and 13% belonged to the Middle East (Z) lineage, respectively, with the latter being totally absent in northern Taiwan. African (A) and Mellifera (M) lineages, officially imported once in 1990s and 1930s respectively, were not detected. The identification of subspecies of A. mellifera and survey of their distribution on the island are expected to facilitate efficient breeding programs and establish a more booming beekeeping industry.  相似文献   

6.
A 371 base pair segment (bordered by Hind III and Eco RI cutting sites) of wheat embryo nuclear DNA has been cloned and sequenced. It is AT-rich (68%), shares some sequence features with autonomously replicating sequence (ARS) elements, and occurs in approximately 7600 copies per haploid genome. When used as probe for blot hybridization to Hind III-digested wheat DNA, it gives an irregular series of hybridization bands. Essentially the same hybridization pattern was observed for rye DNA. It is concluded that this segment is distributed irregularly but, apparently, according to the same rule in both wheat and rye genomes.  相似文献   

7.
A single-seed DNA extraction method was developed for rapid identification of plant genotype. The method was applied to 12 plant species, including the oil seeds sesame and soybean. The results were comparable to those obtained for oil-less seeds such as rice. This method will be useful for genotypic selection which requires rapid screening of large populations. It can also be used to identify varietal purity of seed stocks by PCR and RFLP analysis. The method includes two major steps, (i) treatment by proteinase K in an SDS extraction buffer, and (ii) grinding of a single half seed in the buffer after incubation. About 1.5–2 µg of DNA per half seed (the endosperm part) of rice was obtained and more than 200 half seed samples could be handled by one person in a day. The DNA could be used for fingerprinting and detection of target genes in a transgenic plant by PCR. The amplified PCR products from the half seed DNA exhibited the same banding patterns as those from leaf DNA. Yield and quality of DNA extracted from half seeds of rice was also sufficient for RFLP analysis. The remnant half seeds containing the embryo can be maintained for later germination of selected genotypes.  相似文献   

8.
 DNA sequences from 87 Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) cDNA RFLP probes were determined. Sequences were submitted to the GenBank dbEST database and searched for similarity against nucleotide and protein databases using the BLASTn and BLASTx programs. Twenty-one sequences (24%) were assigned putative functions; 18 of which were from plant species. Six sequences aligned with conifer genes, including genes from Douglas-fir. Similarities among the 87 sequences were revealed by analyses with FASTA, suggesting either redundancy or isoforms of the same gene. Assignment of putative functions to anonymous cDNA mapped markers will increase the understanding of structural gene organization of the Douglas-fir genome. Received: 10 April 1998 / Accepted: 29 April 1998  相似文献   

9.
A simple procedure for the detection of rice RFLPs with non-radioactive probes is described. Rice single-copy DNA was labeled with non-radioactive digoxigenin-d UTP. When digested total DNA was hybridized with the non-radioactive labeled DNA probes, RFLPs for rice single-copy DNA could be successfully detected.  相似文献   

10.
In the course of isolating tRNA genes from wheat mtDNA, we have found the same tRNAPro gene in two different Hind III restriction fragments, H-P1 (0.7 kbp) and H-P2 (1.7 kbp). Sequences immediately flanking these duplicate genes are closely related, although not identical; sequence comparisons suggest that multiple rearrangements have occurred in the vicinity of the H-P2 tRNAPro gene, relative to the H-P1 version. The chimeric nature of H-P2 is emphasized by the presence of sequences that are also found upstream of the wheat mitochondrial 26S rRNA gene, as well as sequences derived from chloroplast DNA. Comparison of H-P2 with H-P1 plus upstream sequences provides some insight into possible molecular events that might have generated H-P2. In particular, such comparisons suggest a model in which the homologous sequences in H-P2 are seen to be derived from H-P1 plus upstream sequences as a result of an intragenomic, site-specific rearrangement event, followed by amplification of the product, its fixation in the mitochondrial genome, and subsequent sequence divergence (single base changes as well as insertions/deletions of up to 50 nucleotides). The results reported here implicate particular primary sequence motifs in certain of the rearrangements that characterize H-P2.  相似文献   

11.
Probes were cloned, characterized, and developed for all regions of the mitochondrial DNA (mtDNA) of pejerrey Odontesthes bonariensis to provide the basis for the study of genetic diversity of South American atherinopsinii and to enable species identification from small amounts of tissue. The mtDNA was extracted from liver and cleaved with Eco RI, producing four fragments (7.4, 3.4, 3.1 and 2.9 kb) which were cloned using pUC118 plasmid vectors. Sequence analysis from both ends of the fragments showed that they encode tRNA (Asp, Phe, and Ser-TGA), 12 S rRNA, cytochrome oxidase (CO) II, NADH 4, 5, and 6, and the D-loop, and that the relative positions of these genes are identical to those in the mtDNA of other teleosts. A comparison of homology with carp mtDNA nucleotide sequences revealed that tRNA (Phe and Ser-TGA) and CO II were relatively conserved, whereas the D-loop region was highly divergent. The cloned mtDNA probes detected mtDNA fragments from about 800 ng of total DNA extracted from liver, muscle, and single embryos of O. bonariensis , and were effective for restriction length fragment polymorphism (RFLP) analysis of Patagonina hatcheri , the most distant atherinopsine relative of pejerrey. The cloned mtDNA probes may be useful for the analysis of genetic diversity and non-destructive species identification, including the examination of eggs, larvae and juveniles. The mtDNA sequences reported here provide the basis for the design of primers for PCR-based RFLP analysis.  相似文献   

12.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

13.
A member of satellite repetitive DNA was isolated and sequenced from a saltwater fishSillago japonica (Percoidei). This sequence consists of several oligo-dA/dT tracts and two inverted repeats which resemble each other. Dot blot hybridization analysis using a satellite DNA clone pSJ2 among the species in the suborder Percoidei revealed that the pSJ2 sequence was amplified at least after the family Sillaginidae had been derived.  相似文献   

14.
Molecular characterization by means of RFLPs of large sets of populations is presently limited by experimental costs. In order to reduce costs, we have evaluated a method based on the RFLP analysis of balanced bulks of DNA from several individuals. The precision of this approach for estimating allele frequencies within each population was investigated using (i) DNA extracted from controlled bulks of leaf tissues of maize inbred lines, (ii) data obtained from individual analyses of 10 maize populations. Both approaches showed that allele frequencies can generally be estimated with a high precision (coefficients of determination up to 0.99 for some probe-enzyme combinations assayed), relative to the variation in allele frequencies observed among maize populations. Although further efforts are needed to define a set of probe-enzyme combinations that can be routinely image processed, these results, and preliminary results from a 65 maize populations project, suggest that this approach could provide highly informative data for large sets of populations, and at relatively low costs.  相似文献   

15.
16.
A tandemly repeated DNA sequence (RRS7) was isolated from Oryza alta (CCDD). RRS7-related sequences were also found tandemly arrayed in genomes AA, BB, BBCC, CC, and EE, and a small amount of RRS7-related sequences were detected in genome FF and the Oryza species with unknown genomes. DNA sequence analysis of the 1844-bp insert of RRS7 revealed that it contained six tandemly repeated units, of which five were 155 bp in length and one was 194 bp in length and contained an imperfect internal 39-bp duplication. Southern blot analysis showed that the boundary sequence contained in RRS7 is a single-copy sequence. A 155-bp consensus sequence derived from the six monomeric repeats contained no internal repeat and showed no significant homology to other currently known sequences. The results of Southern blot and sequence analysis revealed that there are at least two subfamilies present in the RRS7 family; these are represented by the DraI site and the MspI site, respectively. Restriction digestion with two pairs of isoschizomers MboI/Sau3A and MspI/HpaII demonstrated that most of the C residues in the GATC sites and the internal C in the CCGG sites of the RRS7 family in O. Alta were methylated. The usefulness of the RRS7 family in determining the evolutionary relationship of the genome DD and other Oryza genomes is discussed.  相似文献   

17.
大赖草总DNA转化小麦的分子证据   总被引:11,自引:0,他引:11  
缪军  赵民安  李维琪 《遗传学报》2000,27(7):621-627
用来自大麦组的4个高度重复序列克隆了pHv7161,pHv71789,pHv7191、pHv7293,经地高辛和同位素2种方法标记后作为探针,对新疆大赖草(供体)、春麦761(受体)以及用大赖草总DNA通过花粉管通道转化成功的大穗转化株基因组在高度严谨条件下进行了分子杂交。结果表明,这4个探针可以探查出基因内一种具有主串产重复单位的散在重复序列。比较受共体和转化体的杂交图谱,发现在转化株中出现了  相似文献   

18.
Mitochondrial DNA (mtDNA) from 13 cytoplasmic male-sterile (cms) lines from diverse sources were characterized by Southern blot hybridization to pearl millet and maize mtDNA probes. Hybridization patterns of mtDNA digested with PstI, BamHI, SmaI or XhoI and probed with 13.6-, 10.9-, 9.7- or 4.7-kb pearl millet mtDNA clones revealed similarities among the cms lines 5141 A and ICMA 1 (classified as the S-A1 type of cytoplasm based on fertility restoration patterns), PMC 30A and ICMA 2. The remaining cms lines formed a distinct group, within which three subgroups were evident. Among the maize mitochondiral gene clones used, the coxI probe revealed two distinct groups of cytoplasms similar to the pearl millet mtDNA clones. The atp9 probe differentiated the cms line 81 A4, derived from P. glaucum subsp. monodii, while the coxII gene probe did not detect any polymorphism among the cms lines studied. MtDNA digested with BamHI, PstI or XhoI and hybridized to the atp6 probe revealed distinct differences among the cms lines. The maize atp6 gene clone identified four distinct cytoplasmic groups and four subgroups within a main group. The mtDNA fragments hybridized to the atp6 gene probe with differing intensities, suggesting the presence of more than one copy of the gene in different stoichiometries. Rearrangements involving the coxI and/or rrn18-rrn5 genes (mapped within the pearl millet clones) probably resulted in the S-A1 type of sterility. Rearrangements involving the atp6 gene (probably resulting in chimeric form) may be responsible for male sterility in other cms lines of pearl millet.  相似文献   

19.
The study of plant DNA polymerases lags far behind that concerning their animal or yeast counterpart. In this work we describe the first extensive purification to apparent homogeneity, as well as a detailed biochemical and immunological characterization, of a low molecular weight DNA polymerase (DNA polymerase CI) purified from wheat embryos. The monomeric enzyme is a basic protein having a molecular weight of 52 kDa. Polyclonal antibodies raised in rabbits against DNA polymerase CI did not inhibit animal DNA polymerases and or wheat DNA polymerase A, whereas wheat DNA polymerases CII and B were much less affected than the CI enzyme. Several properties of enzyme CI were studied. Some known inhibitors of DNA polymerase activity including aphidicolin, phosphonoacetic acid and heparin, did not affect DNA polymerase CI while the activity of this enzyme was strongly inhibited by ddTTP and N-ethylmaleimide. The polyamine spermine decreased markedly the enzyme activity, while spermidine produced a strong stimulation at the same concentrations that spermine inhibited the enzyme. The best template for this enzyme is poly dA-oligo dT, although polymerase CI can recognize significantly some synthetic polyribonucleotide templates (poly rC-oligo dG, poly rA-oligo dT) but only at a given protein/template primer ratio. The enzyme is blocked at the amino terminus, thus preventing the automatic sequencing of the protein. The amino acid analysis showed a striking similarity with the animal low molecular weight DNA polymerase . The latter observation, as well as the effect of inhibitors (except N-ethylmaleimide which does not inhibit the animal polymerase) indicate that the DNA polymerase described in this work is a plant DNA polymerase very similar to the low molecular weight animal DNA polymerase , an enzyme believed to be involved in nuclear DNA repair.  相似文献   

20.
An improved protocol for non-radioactive labelling and detection of rice and tomato DNA is described. The procedure includes the use of polymerase chain reaction for the incorporation of digoxigenin-dUTP in the DNA molecule and the use of a chemiluminescent compound (AMPPD) for the signal detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号