首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular prion protein (PrP(c)) is physiologically cleaved in the middle of its 106-126 amino acid neurotoxic region at the 110/111 downward arrow112 peptidyl bond, yielding an N-terminal fragment referred to as N1. We recently demonstrated that two disintegrins, namely ADAM10 and ADAM17 (TACE, tumor necrosis factor alpha converting enzyme) participated in both constitutive and protein kinase C-regulated generation of N1, respectively. These proteolytic events were strikingly reminiscent of those involved in the so-called "alpha-secretase pathway" that leads to the production of secreted sAPPalpha from betaAPP. We show here, by transient and stable transfection analyses, that ADAM9 also participates in the constitutive secretion of N1 in HEK293 cells, TSM1 neurons, and mouse fibroblasts. Decreasing endogenous ADAM9 expression by an antisense approach drastically reduces both N1 and sAPPalpha recoveries. However, we establish that ADAM9 was unable to increase N1 and sAPPalpha productions after transient transfection in fibroblasts depleted of ADAM10. Accordingly, ADAM9 is unable to cleave a fluorimetric substrate of membrane-bound alpha-secretase activity in ADAM10(-/-) fibroblasts. However, we establish that co-expression of ADAM9 and ADAM10 in ADAM10-deficient fibroblasts leads to enhanced membrane-bound and released fluorimetric substrate hydrolyzing activity when compared with that observed after ADAM10 cDNA transfection alone in ADAM10(-/-) cells. Interestingly, we demonstrate that shedded ADAM10 displays the ability to cleave endogenous PrP(c) in fibroblasts. Altogether, these data provide evidence that ADAM9 is an important regulator of the physiological processing of PrP(c) and betaAPP but that this enzyme acts indirectly, likely by contributing to the shedding of ADAM10. ADAM9 could therefore represent, besides ADAM10, another potential therapeutic target to enhance the breakdown of the 106-126 and Abeta toxic domains of the prion and betaAPP proteins.  相似文献   

2.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

3.
The immunoglobulin superfamily recognition molecule L1 plays important functional roles in the developing and adult nervous system. Metalloprotease-mediated cleavage of this adhesion molecule has been shown to stimulate cellular migration and neurite outgrowth. We demonstrate here that L1 cleavage is mediated by two distinct members of the disintegrin and metalloprotease family, ADAM10 and ADAM17. This cleavage is differently regulated and leads to the generation of a membrane bound C-terminal fragment, which is further processed through gamma-secretase activity. Pharmacological approaches with two hydroxamate-based inhibitors with different preferences in blocking ADAM10 and ADAM17, as well as loss of function and gain of function studies in murine embryonic fibroblasts, showed that constitutive shedding of L1 is mediated by ADAM10 while phorbol ester stimulation or cholesterol depletion led to ADAM17-mediated L1 cleavage. In contrast, N-methyl-d-aspartate treatment of primary neurons stimulated ADAM10-mediated L1 shedding. Both proteases were able to affect L1-mediated adhesion and haptotactic migration of neuronal cells. In particular, both proteases were involved in L1-dependent neurite outgrowth of cerebellar neurons. Thus, our data identify ADAM10 and ADAM17 as differentially regulated L1 membrane sheddases, both critically affecting the physiological functions of this adhesion protein.  相似文献   

4.
The neural cell adhesion molecule "close homologue of L1," termed CHL1, has functional importance in the nervous system. CHL1 is expressed as a transmembrane protein of 185 kDa, and ectodomain shedding releases soluble fragments relevant for its physiological function. Here we describe that ADAM8, a member of the family of metalloprotease disintegrins cleaves a CHL1-Fc fusion protein in vitro at two sites corresponding to release of the extracellular domain of CHL1 in fibronectin (FN) domains II (125 kDa) and V (165 kDa), inhibited by batimastat (BB-94). Cleavage of CHL1-Fc in the 125-kDa fragment was not detectable under non-reducing conditions arguing that cleavage resulting in the 165-kDa fragment is more relevant in releasing soluble CHL1 in vivo. In cells transfected with full-length ADAM8, membrane proximal cleavage of CHL1 was similar and not stimulated by phorbol ester 12-O-tetradecanoylphorbol-13-acetate and pervanadate. No cleavage of CHL1 was observed in cells expressing either inactive ADAM8 with a Glu330 to Gln exchange (EQ-A8), or active ADAM10 and ADAM17. Consequently, processing of CHL1 was hardly detectable in brain extracts of ADAM8-deficient mice but enhanced in a neurodegenerative mouse mutant. CHL1 processed by ADAM8 in supernatants of COS-7 cells and in co-culture with cerebellar granule neurons was very potent in stimulating neurite outgrowth and suppressing neuronal cell death, not observed in cells co-transfected with CHL1/EQ-A8, CHL1/ADAM10, or CHL1/ADAM17. Taken together, we propose that ADAM8 plays an important role in physiological and pathological cell interactions by a specific release of functional CHL1 from the cell surface.  相似文献   

5.
The beta-amyloid precursor protein (betaAPP) undergoes a physiological cleavage triggered by one or several proteolytic activities referred to as alpha-secretases, leading to the secretion of sAPPalpha. Several lines of evidence indicate that the alpha-secretase cleavage is a highly regulated process. Thus, besides constitutive production of sAPPalpha, several studies have reported on protein kinase C-regulated sAPPalpha secretion. Studies aimed at identifying alpha-secretase(s) candidates suggest the involvement of enzymes belonging to the pro-hormone convertases and disintegrin families. The delineation of respective contributions of proteolytic activities in constitutive and regulated sAPPalpha secretion is rendered difficult by the fact that the overall regulated response always includes the basal constitutive counterpart that cannot be selectively abolished. Here we report on the fact that the furin-deficient LoVo cells are devoid of regulated PKC-dependent sAPPalpha secretion and therefore represent an interesting model to study exclusively the constitutive sAPPalpha secretion. We show here, by a pharmacological approach using selective inhibitors, that pro-hormone convertases and proteases of the ADAM (disintegrin metalloproteases) family participate in the production/secretion of sAPPalphas in LoVo cells. Transfection analysis allowed us to further establish that the pro-hormone convertase 7 and ADAM10 but not ADAM17 (TACE, tumour necrosis factor alpha-converting enzyme) likely contribute to constitutive sAPPalpha secretion by LoVo cells.  相似文献   

6.
The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-gamma and TNF-alpha, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-gamma and TNF-alpha synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue.  相似文献   

7.
Ectodomain shedding has emerged as an important regulatory step in the function of transmembrane proteins. Intercellular adhesion molecule-1 (ICAM-1), an adhesion receptor that mediates inflammatory and immune responses, undergoes shedding in the presence of inflammatory mediators and phorbol 12-myristate 13-acetate (PMA). The shedding of ICAM-1 in ICAM-1-transfected 293 cells upon PMA stimulation and in endothelial cells upon tumor necrosis factor-alpha stimulation was blocked by metalloproteinase inhibitors, whereas serine protease inhibitors were ineffective. p-Aminophenylmercuric acetate, a mercuric compound that is known to activate matrix metalloproteinases, up-regulated ICAM-1 shedding. TIMP-3 (but not TIMP-1 or -2) effectively blocked cleavage. This profile suggests the involvement of the ADAM family of proteases in the cleavage of ICAM-1. The introduction of enzymatically active tumor necrosis factor-alpha-converting enzyme (TACE) into ICAM-1-expressing cells up-regulated cleavage. Small interfering RNA directed against TACE blocked ICAM-1 cleavage. ICAM-1 transfected into TACE-/- fibroblasts did not show increased shedding over constitutive levels in the presence of PMA, whereas cleavage did occur in ICAM-1-transfected TACE+/+ cells. These results indicate that ICAM-1 shedding is mediated by TACE. Blocking the shedding of ICAM-1 altered the cell adhesive function, as ICAM-1-mediated cell adhesion was up-regulated in the presence of TACE small interfering RNA and TIMP-3, but not TIMP-1. However, cleavage was found to occur at multiple sites within the stalk domain of ICAM-1, and numerous point mutations within the region did not affect cleavage, indicating that TACE-mediated cleavage of ICAM-1 may not be sequence-specific.  相似文献   

8.
Betacellulin belongs to the family of epidermal growth factor-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release a soluble mature growth factor. In this study, we investigated the ectodomain shedding of the betacellulin precursor (pro-BTC) in conditionally immortalized wild-type (WT) and ADAM-deficient cell lines. Sequential ectodomain cleavage of the predominant cell-surface 40-kDa form of pro-BTC generated a major (26-28 kDa) and two minor (20 and 15 kDa) soluble forms and a cellular remnant lacking the ectodomain (12 kDa). Pro-BTC shedding was activated by calcium ionophore (A23187) and by the metalloprotease activator p-aminophenylmercuric acetate (APMA), but not by phorbol esters. Culturing cells in calcium-free medium or with the protein kinase Cdelta inhibitor rottlerin, but not with broad-based protein kinase C inhibitors, blocked A23187-activated pro-BTC shedding. These same treatments were without effect for constitutive and APMA-induced cleavage events. All pro-BTC shedding was blocked by treatment with a broad-spectrum metalloprotease inhibitor (GM6001). In addition, constitutive and activated pro-BTC shedding was differentially blocked by TIMP-1 or TIMP-3, but was insensitive to treatment with TIMP-2. Pro-BTC shedding was functional in cells from ADAM17- and ADAM9-deficient mice and in cells overexpressing WT or catalytically inactive ADAM17. In contrast, overexpression of WT ADAM10 enhanced constitutive and activated shedding of pro-BTC, whereas overexpression of catalytically inactive ADAM10 reduced shedding. These results demonstrate, for the first time, activated pro-BTC shedding in response to extracellular calcium influx and APMA and provide evidence that ADAM10 mediates constitutive and activated pro-BTC shedding.  相似文献   

9.
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.  相似文献   

10.
A disintegrin and metalloproteases (ADAMs) have been implicated in many processes controlling organismic development and integrity. Important substrates of ADAM proteases include growth factors, cytokines and their receptors and adhesion proteins. The inducible but irreversible cleavage of their substrates alters cell-cell communication and signaling. The crucial role of ADAM proteases (e.g. ADAM10 and 17) for mammalian development became evident from respective knockout mice, that displayed pre- or perinatal lethality with severe defects in many organs and tissues. Although many substrates for these two ADAM proteases were identified over the last decade, the regulation of their surface appearance, their enzymatic activity and their substrate specificity are still not well understood. We therefore analyzed the constitutive and inducible surface expression of ADAM10 and ADAM17 on a variety of human T cell and tumor cell lines. We demonstrate that ADAM10 is constitutively present at comparably high levels on the majority of the tested cell types. Stimulation with phorbol ester and calcium ionophore does not significantly alter the amount of surface ADAM10, except for a slight down-regulation from T cell blasts. Using FasL shedding as a readout for ADAM10 activity, we show that PKC activation and calcium mobilization are both prerequisite for activation of ADAM10 resulting in a production of soluble FasL. In contrast to ADAM10, the close relative ADAM17 is detected at only low levels on unstimulated cells. ADAM17 surface expression on T cell blasts is rapidly induced by stimulation. Since this inducible mobilization of ADAM17 is sensitive to inhibitors of actin filament formation, we propose that ADAM17 but not ADAM10 is prestored in a subcellular compartment that is transported to the cell surface in an activation- and actin-dependent manner.  相似文献   

11.
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.  相似文献   

12.
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.  相似文献   

13.
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis.  相似文献   

14.
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes.  相似文献   

15.
Many membrane-bound proteins, including cytokines, receptors, and growth factors, are proteolytically cleaved to release a soluble form of their extracellular domain. The tumor necrosis factor (TNF)-alpha converting enzyme (TACE/ADAM-17) is a transmembrane metalloproteinase responsible for the proteolytic release or "shedding" of several cell-surface proteins, including TNF and p75 TNFR. We established a TACE-reconstitution system using TACE-deficient cells co-transfected with TACE and substrate cDNAs to study TACE function and regulation. Using the TACE-reconstitution system, we identified two additional substrates of TACE, interleukin (IL)-1R-II and p55 TNFR. Using truncations and chimeric constructs of TACE and another ADAM family member, ADAM-10, we studied the function of the different domains of TACE in three shedding activities. We found that TACE must be expressed with its membrane-anchoring domain for phorbol ester-stimulated shedding of TNF, p75 TNFR, and IL-1R-II, but that the cytoplasmic domain is not required for the shedding of these substrates. The catalytic domain of ADAM-10 could not be functionally substituted for that of TACE. IL-1R-II shedding required the cysteine-rich domain of TACE as well as the catalytic domain, whereas TNF and p75 TNFR shedding required only the tethered TACE catalytic domain.  相似文献   

16.
Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase   总被引:9,自引:0,他引:9  
The putative alpha-secretase cleaves the amyloid precursor protein (APP) of Alzheimer's disease in the middle of the amyloid beta peptide (Abeta) domain. It is generally thought that the alpha-secretase pathway mitigates Abeta formation in the normal brain. Several studies have suggested that ADAM9, ADAM10, and ADAM17 are candidate alpha-secretases belonging to the ADAM (a disintegrin and metalloprotease) family, which are membrane-anchored cell surface proteins. In this comparative study of ADAM9, ADAM10, and ADAM17, we examined the physiological role of ADAMs by expressing these ADAMs in COS-7 cells, and both "constitutive" and "regulated" alpha-secretase activities of these ADAMs were determined. We tried to suppress the expression of these ADAMs in human glioblastoma A172 cells, which contain large amounts of endogenous alpha-secretase, by lipofection of the double-stranded RNA (dsRNA) encoding each of these ADAMs. The results indicate that ADAM9, ADAM10, and ADAM17 catalyze alpha-secretory cleavage and therefore act as alpha-secretases in A172 cells. This is the first report that to suggest the endogenous alpha-secretase is composed of several ADAM enzymes.  相似文献   

17.
The amyloid precursor protein (APP) is proteolytically processed by beta- and gamma-secretases to release amyloid beta, the main component in senile plaques found in the brains of patients with Alzheimer disease. Alternatively, APP can be cleaved within the amyloid beta domain by alpha-secretase releasing the non-amyloidogenic product sAPP alpha, which has been shown to have neuroprotective properties. Several G protein-coupled receptors are known to activate alpha-secretase-dependent processing of APP; however, the role of G protein-coupled nucleotide receptors in APP processing has not been investigated. Here it is demonstrated that activation of the G protein-coupled P2Y2 receptor (P2Y2R) subtype expressed in human 1321N1 astrocytoma cells enhanced the release of sAPP alpha in a time- and dose-dependent manner. P2Y2 R-mediated sAPP alpha release was dependent on extracellular calcium but was not affected by 1,2-bis(2-aminophenoxy)ethane-N,N,N,-trimethylammonium salt, an intracellular calcium chelator, indicating that P2Y2R-stimulated intracellular calcium mobilization was not involved. Inhibition of protein kinase C (PKC) with GF109203 or by PKC down-regulation with phorbol ester pre-treatment had no effect on UTP-stimulated sAPP alpha release, indicating a PKC-independent mechanism. U0126, an inhibitor of the mitogen-activated protein kinase pathway, partially inhibited sAPPalpha release by UTP, whereas inhibitors of Src-dependent epidermal growth factor receptor transactivation by P2Y2Rs had no effect. The metalloprotease inhibitors phenanthroline and TAPI-2 and the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone also diminished UTP-induced sAPP alpha release. Furthermore, small interfering RNA silencing of an endogenous adamalysin, ADAM10 or ADAM17/TACE, partially suppressed P2Y2R-activated sAPP alpha release, whereas treatment of cells with both ADAM10 and ADAM17/TACE small interfering RNAs completely abolished UTP-activated sAPP alpha release. These results may contribute to an understanding of the non-amyloidogenic processing of APP.  相似文献   

18.
Previous findings indicated that the activated leukocyte cell adhesion molecule (ALCAM) is expressed by tumors and plays a role in tumor biology. In this study, we show that ALCAM is shed from epithelial ovarian cancer (EOC) cells in vitro, leading to the generation of a soluble ALCAM (sALCAM), consisting of most of the extracellular domain. A similar sALCAM molecule was also found in the ascitic fluids and sera from EOC patients, suggesting that this process also occurs in vivo. sALCAM is constitutively produced by EOC cells, and this process can be enhanced by cell treatment with pervanadate, phorbol 12-myristate 13-acetate (PMA), or epidermal growth factor (EGF), a known growth factor for EOC. Pharmacologic inhibitors of matrix metalloproteinases (MMP) and of a disintegrin and metalloproteases (ADAM), and the tissue inhibitor of metalloproteinase-3, significantly inhibited sALCAM release by EOC cells. The ADAM17/TACE molecule was expressed in EOC cell lines and ADAM17/TACE silencing by specific small interfering RNA-reduced ALCAM shedding. In addition, inhibitors of ADAM function blocked EOC cell motility in a wound-healing assay. Conversely, a recombinant antibody blocking ALCAM adhesive functions and inducing ALCAM internalization enhanced EOC cell motility. Altogether, our data suggest that the disruption of ALCAM-mediated adhesion is a relevant step in EOC motility, and ADAM17/TACE takes part in this process, which may be relevant to EOC invasive potential.  相似文献   

19.
The membrane-anchored metalloproteinase a disintegrin and metalloprotease 10 (ADAM10) is required for shedding of membrane proteins such as EGF, betacellulin, the amyloid precursor protein, and CD23 from cells. ADAM10 is constitutively active and can be rapidly and post-translationally enhanced by several stimuli, yet little is known about the underlying mechanism. Here, we use ADAM10-deficient cells transfected with wild type or mutant ADAM10 to address the role of its cytoplasmic and transmembrane domain in regulating ADAM10-dependent protein ectodomain shedding. We report that the cytoplasmic domain of ADAM10 negatively regulates its constitutive activity through an ER retention motif but is dispensable for its stimulated activity. However, chimeras with the extracellular domain of ADAM10 and the transmembrane domain of ADAM17 with or without the cytoplasmic domain of ADAM17 show reduced stimulated shedding of the ADAM10 substrate betacellulin, whereas the ionomycin-stimulated shedding of the ADAM17 substrates CD62-L and TGFα is not affected. Moreover, we show that influx of extracellular calcium activates ADAM10 but is not essential for its activation by APMA and BzATP. Finally, the rapid stimulation of ADAM10 is not significantly affected by incubation with proprotein convertase inhibitors for up to 8 h, arguing against a major role of increased prodomain removal in the rapid stimulation of ADAM10. Thus, the cytoplasmic domain of ADAM10 negatively influences constitutive shedding through an ER retention motif, whereas the cytoplasmic domain and prodomain processing are not required for the rapid activation of ADAM10-dependent shedding events.  相似文献   

20.
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号