首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular prion protein (PrP(c)) undergoes a proteolytic attack at the 110/111 downward arrow112 peptide bond, whereas the PrP isoform (PrP(res)) that accumulates in the brain tissue in Creutzfeldt-Jakob disease reveals an alternate cleavage site at about residue 90. Interestingly, the normal processing of PrP occurs inside the 106-126 amino acid region thought to be responsible for the neurotoxicity of the pathogenic prions, whereas PrP(res) cleavage preserves this potentially toxic domain. Therefore, any molecular mechanisms leading to enhanced cleavage at the 110/111 downward arrow112 peptide bond could be of potential interest. We set up TSM1 neurons and HEK293 stable transfectants overexpressing the wild-type or 3F4-tagged murine PrP(c), respectively. Both mock-transfected and PrP(c)-expressing cell lines produced an 11-12-kDa PrP fragment (referred to as N1), the immunological characterization of which strongly suggests that it corresponds to the N-terminal PrP(c) fragment derived from normal processing. We have established that the recovery of secreted N1 is increased by the protein kinase C agonists PDBu and PMA in a time- and dose-dependent manner in both cell lines. In contrast, secretion of N1 remains unaffected by the inactive PDBu analog alphaPDD and by the protein kinase A effectors dibutyryl cAMP and forskolin. Overall, our data indicate that the normal processing of PrP(c) is up-regulated by protein kinase C but not protein kinase A in human cells and murine neurons.  相似文献   

2.
The cellular prion protein (PrP(c)) is physiologically cleaved in the middle of its 106-126 amino acid neurotoxic region at the 110/111 downward arrow112 peptidyl bond, yielding an N-terminal fragment referred to as N1. We recently demonstrated that two disintegrins, namely ADAM10 and ADAM17 (TACE, tumor necrosis factor alpha converting enzyme) participated in both constitutive and protein kinase C-regulated generation of N1, respectively. These proteolytic events were strikingly reminiscent of those involved in the so-called "alpha-secretase pathway" that leads to the production of secreted sAPPalpha from betaAPP. We show here, by transient and stable transfection analyses, that ADAM9 also participates in the constitutive secretion of N1 in HEK293 cells, TSM1 neurons, and mouse fibroblasts. Decreasing endogenous ADAM9 expression by an antisense approach drastically reduces both N1 and sAPPalpha recoveries. However, we establish that ADAM9 was unable to increase N1 and sAPPalpha productions after transient transfection in fibroblasts depleted of ADAM10. Accordingly, ADAM9 is unable to cleave a fluorimetric substrate of membrane-bound alpha-secretase activity in ADAM10(-/-) fibroblasts. However, we establish that co-expression of ADAM9 and ADAM10 in ADAM10-deficient fibroblasts leads to enhanced membrane-bound and released fluorimetric substrate hydrolyzing activity when compared with that observed after ADAM10 cDNA transfection alone in ADAM10(-/-) cells. Interestingly, we demonstrate that shedded ADAM10 displays the ability to cleave endogenous PrP(c) in fibroblasts. Altogether, these data provide evidence that ADAM9 is an important regulator of the physiological processing of PrP(c) and betaAPP but that this enzyme acts indirectly, likely by contributing to the shedding of ADAM10. ADAM9 could therefore represent, besides ADAM10, another potential therapeutic target to enhance the breakdown of the 106-126 and Abeta toxic domains of the prion and betaAPP proteins.  相似文献   

3.
4.
Human brain cellular prion protein (PrP(c)) is cleaved within its highly conserved domain at amino acid 110/111/112. This cleavage generates a highly stable C-terminal fragment (C1). We examined the relative abundance of holo- and truncated PrP(c) in human cerebral cortex and we found important inter-individual variations in the proportion of C1. Neither age nor postmortem interval explain the large variability observed in C1 amount. Interestingly, our results show that high levels of C1 are associated with the presence of the active ADAM 10 suggesting this zinc metalloprotease as a candidate for the cleavage of PrP(c) in the human brain.  相似文献   

5.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

6.
The biology of the cellular prion protein   总被引:5,自引:0,他引:5  
Prions are the etiological agents for infectious degenerative encephalopaties acting by inducing conformational changes in the cellular prion protein (PrPc), which is a cell membrane GPI anchored glycoprotein. Besides its conservation among species and expression in most tissues, and in particular, in high levels in the nervous system, the role for cellular prion protein remained obscure for some time. Initial skepticism about such a role was mainly due to the absence of a gross phenotype alteration in cellular prion protein null mice. In the last few years, some possible biological functions for cellular prion protein have been described. Copper binds to the molecule and the resulting complex may be responsible for cell protection against oxidative stress. Cellular prion protein is also a high-affinity ligand for laminin, and induces neuronal cell adhesion, neurite extension and maintenance. The binding site resides in a carboxy-terminal peptide of the gamma-1 chain, which is very conserved among all laminin types, indicating that this interaction may be relevant in other tissues besides the brain. Moreover, cellular prion protein association with a peptide that mimics a putative ligand at the cell surface, p66, triggers neuroprotective signals through a cAMP/PKA-dependent pathway. Since PrPc recycles from membrane to an intracellular compartment, which is induced by copper binding, it is also possible that the internalization mechanism allows switching off elicited signals.  相似文献   

7.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

8.
ADAM10 is a disintegrin metalloproteinase that processes amyloid precursor protein and ErbB ligands and is involved in the shedding of many type I and type II single membrane-spanning proteins. Like tumor necrosis factor-alpha-converting enzyme (TACE or ADAM17), ADAM10 is expressed as a zymogen, and removal of the prodomain results in its activation. Here we report that the recombinant mouse ADAM10 prodomain, purified from Escherichia coli, is a potent competitive inhibitor of the human ADAM10 catalytic/disintegrin domain, with a K(i) of 48 nM. Moreover, the mouse ADAM10 prodomain is a selective inhibitor as it only weakly inhibits other ADAM family proteinases in the micromolar range and does not inhibit members of the matrix metalloproteinase family under similar conditions. Mouse prodomains of TACE and ADAM8 do not inhibit their respective enzymes, indicating that ADAM10 inhibition by its prodomain is unique. In cell-based assays we show that the ADAM10 prodomain inhibits betacellulin shedding, demonstrating that it could be of potential use as a therapeutic agent to treat cancer.  相似文献   

9.
The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored protein. We investigated whether PrP(C) can move from one cell to another cell in a cell model. Little PrP(C) transfer was detected when a PrP(C) expressing human neuroblastoma cell line was cultured with the human erythroleukemia cells IA lacking PrP(C). Efficient transfer of PrP(C) was detected with the presence of phorbol 12-myristate 13-acetate, an activator of protein kinase C. Maximum PrP(C) transfer was observed when both donor and recipient cells were activated. Furthermore, PrP(C) transfer required the GPI anchor and direct cell to cell contact. However, intercellular protein transfer is not limited to PrP(C), another GPI-anchored protein, CD90, also transfers from the donor cells to acceptor cells after cellular activation. Therefore, this transfer process is GPI-anchor and cellular activation dependent. These findings suggest that the intercellular transfer of GPI-anchored proteins is a regulated process, and may have implications for the pathogenesis of prion disease.  相似文献   

10.
Identification of cellular proteins binding to the scrapie prion protein   总被引:2,自引:0,他引:2  
The scrapie prion protein (PrPSc) is an abnormal isoform of the cellular protein PrPc. PrPSc is found only in animals with scrapie or other prion diseases. The invariable association of PrPSc with infectivity suggests that PrPSc is a component of the infectious particle. In this study, we report the identification of two proteins from hamster brain of 45 and 110 kDa (denoted PrP ligands Pli 45 and Pli 110) which were able to bind to PrP 27-30, the protease-resistant core of PrPSc on ligand blots. Pli 45 and Pli 110 also bound PrPC. Both Pli's had isoelectric points of approximately 5. The dissociation rate constant of the Pli 45/PrP 27-30 complex was 3 x 10(-6) s-1. Amino acid and protein sequence analyses were performed on purified Pli 45. Both the composition and the sequence were almost identical with those predicted for mouse glial fibrillary acidic protein (GFAP). Furthermore, antibodies to Pli 45 reacted with recombinant GFAP. The identification of proteins which interact with the PrP isoforms in normal and diseased brain may provide new insights into the function of PrPC and into the molecular mechanisms underlying prion diseases.  相似文献   

11.
A method for the extraction and purification of PrP(C), in its native monomeric form, from outdated human platelet concentrates is described. Both calcium ionophore platelet activation and lysis in Triton X-100 were evaluated as methods for the extraction of soluble platelet PrP(C) in its monomeric form. Following platelet activation, the majority of released PrP(C) was detected as a disulphide linked high molecular weight complex, which under reducing conditions could be separated into what appear to be stable non-disulphide linked PrP dimers or PrP covalently linked to another as yet unidentified protein. This phenomenon appears to be unique to activation since only monomeric PrP(C) was detected following lysis of resting platelets. Subsequently, PrP(C) was purified from the Triton X-100 lysate by sequential cation ion exchange and Cu2+ affinity chromatography. From 10 L of outdated platelet concentrate, we were able to recover 1.29 mg PrP(C) at a purity of 92%.  相似文献   

12.
The prion protein is central to the disease pathogenesis of a variety of neurodegenerative diseases such as CJD. The protein is only able to initiate the disease process following post-translational modification. The main characteristic of this change is the ability of this altered isoform to polymerise. We wish to determine if altered cleavage of the protein could generate a protein fragment able to initiate polymerisation. During normal metabolic breakdown the protein is initially cleaved at a single site at around amino acid residue 111/112 in the mouse sequence. A second site before amino acid residue 90 has been postulated as an alternative cleavage point. We have provided evidence that hydrogen peroxide as low as 50 microM in the presence of copper, iron or manganese (but not nickel, magnesium or zinc) can cleave the recombinant protein near this site and requires a GXXH motif in the protein sequence. This reaction results in the production of 6 and 19 kDa fragments of the protein. This cleavage pattern occurs in prion proteins from different species (mouse, chicken and turtle) and is enhanced by modification of the octameric repeat region. The 19 kDa fragment produced by this reaction is protease sensitive. This fragment in a pure form caused the polymerisation of wild-type prion protein by a seeding mechanism. Therefore our results provide a possible mechanism by which altered cleavage of the prion protein could result in the kind of protein polymerisation associated with prion diseases.  相似文献   

13.
Expression of the cellular prion protein (PrP(c)) has been shown to be crucial for the development of transmissible spongiform encephalopathies and for the accumulation of the disease-associated conformer (PrP(sc)) in the brain and other tissues. One of the emerging hypotheses is that the conversion phenomenon could take place at the site where the infectious agent meets PrP(c). In this work we have studied whether PrP(c), a protein found predominantly in neurons, could also exist in pancreatic endocrine cells since neuroectoderm-derived cells and pancreatic islet cells share a large number of similarities. For this purpose we have examined the expression of PrP(c) in a series of fetal and postnatal bovine pancreatic tissue by immunohistochemistry and RT-PCR. Using immunostained serial sections and specific antibodies against bovine PrP(c), insulin, glucagon, somatostatin, chromogranin A and chromogranin B we found that PrP(c) is highly expressed in all endocrine cells of fetal and adult pancreatic islets with a particular strong expression in A-cells. Moreover it became evident that the PrP(c) gene-neighbour chromogranin B as well as chromogranin A are coexpressed together with PrP(c). The selective expression of PrP(c) in the bovine endocrine pancreas is of particular importance regarding possible iatrogenic transmission routes and demonstrates also that bovine pancreatic islet cells could represent an interesting model to study the control of PrP-gene expression.  相似文献   

14.
Germ cell apoptosis is important to regulate sperm production in the mammalian testis, but the molecular mechanisms underlying apoptosis are still poorly understood. We have recently shown that in vitro, etoposide induces upregulation of TACE/ADAM17 and ADAM10, two membrane-bound extracellular metalloproteases. Here we show that in vivo these enzymes are involved in etoposide-, but not in heat shock-, induced apoptosis in rat spermatogenesis. Germ cell apoptosis induced by DNA damage was associated with an increase in protein levels and cell surface localization of TACE/ADAM17 and ADAM10. On the contrary, apoptosis of germ cells induced by heat stress, another cell death stimulus, did not change levels or localization of these proteins. Pharmacological in vivo inhibition of TACE/ADAM17 and ADAM10 prevents etoposide-induced germ cell apoptosis. Finally, Gleevec (STI571) a pharmacological inhibitor of p73, a master gene controlling apoptosis induced by etoposide, prevented the increase of TACE/ADAM17 levels. Our results strongly suggest that TACE/ADAM17 participates in in vivo apoptosis of male germ cells induced by DNA damage.  相似文献   

15.
Interleukin-6 (IL-6) activates cells by binding to the membrane-bound IL-6 receptor (IL-6R) and subsequent formation of a glycoprotein 130 homodimer. Cells that express glycoprotein 130, but not the IL-6R, can be activated by IL-6 and the soluble IL-6R which is generated by shedding from the cell surface or by alternative splicing. Here we show that cholesterol depletion of cells with methyl-beta-cyclodextrin increases IL-6R shedding independent of protein kinase C activation and thus differs from phorbol ester-induced shedding. Contrary to cholesterol depletion, cholesterol enrichment did not increase IL-6R shedding. Shedding of the IL-6R because of cholesterol depletion is highly dependent on the metalloproteinase ADAM17 (tumor necrosis factor-alpha-converting enzyme), and the related ADAM10, which is identified here for the first time as an enzyme involved in constitutive and induced shedding of the human IL-6R. When combined with protein kinase C inhibition by staurosporine or rottlerin, breakdown of plasma membrane sphingomyelin or enrichment of the plasma membrane with ceramide also increased IL-6R shedding. The effect of cholesterol depletion was confirmed in human THP-1 and Hep3B cells and in primary human peripheral blood monocytes, which naturally express the IL-6R. For decades, high cholesterol levels have been considered harmful. This study indicates that low cholesterol levels may play a role in shedding of the membrane-bound IL-6R and thereby in the immunopathogenesis of human diseases.  相似文献   

16.
The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions.The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD).In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands.With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD.The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre.Key words: cellular prion protein, Alzheimer disease, transgenic mice  相似文献   

17.
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.  相似文献   

18.
Aberrant metabolism and conformational alterations of the cellular prion protein (PrP(c)) are the underlying causes of transmissible spongiform encephalopathies in humans and animals. In cells, PrP(c) is modified post-translationally and transported along the secretory pathway to the plasma membrane, where it is attached to the cell surface by a glycosylphosphatidylinositol anchor. In surface biotinylation assays we observed that deletions within the unstructured N terminus of murine PrP(c) led to a significant reduction of internalization of PrP after transfection of murine neuroblastoma cells. Truncation of the entire N terminus most significantly inhibited internalization of PrP(c). The same deletions caused a significant prolongation of cellular half-life of PrP(c) and a delay in the transport through the secretory pathway to the cell surface. There was no difference in the glycosylation kinetics, indicating that all PrP constructs equally passed endoplasmic reticulum-based cellular quality control. Addition of the N terminus of the Xenopus laevis PrP, which does not encode a copper-binding repeat element, to N-terminally truncated mouse PrP restored the wild type phenotype. These results provide deeper insight into the life cycle of the PrP(c), raising the novel possibility of a targeting function of its N-proximal part by interacting with the secretory and the endocytic machinery. They also indicate the conservation of this targeting property in evolution.  相似文献   

19.
Several cytokines and growth factors are released by proteolytic cleavage of a membrane-anchored precursor, through the action of ADAM (a disintegrin and metalloprotease) metalloproteases. The activity of these proteases is regulated through largely unknown mechanisms. In this study we show that Ab engagement of several tetraspanins (CD9, CD81, CD82) increases epidermal growth factor and/or TNF-alpha secretion through a mechanism dependent on ADAM10. The effect of anti-tetraspanin mAb on TNF-alpha release is rapid, not relayed by intercellular signaling, and depends on an intact MEK/Erk1/2 pathway. It is also associated with a concentration of ADAM10 in tetraspanin-containing patches. We also show that a large fraction of ADAM10 associates with several tetraspanins, indicating that ADAM10 is a component of the "tetraspanin web." These data show that tetraspanins regulate the activity of ADAM10 toward several substrates, and illustrate how membrane compartmentalization by tetraspanins can control the function of cell surface proteins such as ectoproteases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号