首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration. H. Tempfer and A. Wagner have contributed equally to this paper.  相似文献   

2.
于珍  栾春杰  顾鸣敏 《遗传》2014,36(1):21-29
腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT)是人类最常见的遗传性运动和感觉神经疾病之一, 全球群体发病率约为1/2500。CMT主要分为脱髓鞘型(包括CMT1, CMT3, CMT4和CMTX1)和轴索型(CMT2)。迄今为止, 先后已有17个CMT2的致病基因被定位和克隆, 然而对这些基因的致病机制所知甚少。建立CMT2小鼠模型是从动物水平研究突变基因致病机制的有效手段。目前已成功构建了近10种CMT2的转基因小鼠、基因敲除小鼠或基因敲入小鼠模型, 其中尤以带有人源致病基因的转基因小鼠模型为多。文章简要介绍了CMT2小鼠模型构建策略, 着重阐述了CMT2小鼠模型的研究进展, 并对个别小鼠模型进行了剖析。  相似文献   

3.
Collagen fibrillogenesis is finely regulated during development of tissue-specific extracellular matrices. The role(s) of a leucine-rich repeat protein subfamily in the regulation of fibrillogenesis during tendon development were defined. Lumican-, fibromodulin-, and double-deficient mice demonstrated disruptions in fibrillogenesis. With development, the amount of lumican decreases to barely detectable levels while fibromodulin increases significantly, and these changing patterns may regulate this process. Electron microscopic analysis demonstrated structural abnormalities in the fibrils and alterations in the progression through different assembly steps. In lumican-deficient tendons, alterations were observed early and the mature tendon was nearly normal. Fibromodulin-deficient tendons were comparable with the lumican-null in early developmental periods and acquired a severe phenotype by maturation. The double-deficient mice had a phenotype that was additive early and comparable with the fibromodulin-deficient mice at maturation. Therefore, lumican and fibromodulin both influence initial assembly of intermediates and the entry into fibril growth, while fibromodulin facilitates the progression through growth steps leading to mature fibrils. The observed increased ratio of fibromodulin to lumican and a competition for the same binding site could mediate these transitions. These studies indicate that lumican and fibromodulin have different developmental stage and leucine-rich repeat protein specific functions in the regulation of fibrillogenesis.  相似文献   

4.
Tendons and ligaments are key structures in promoting joint movement and maintaining joint stability. Although numerous reviews have detailed their structure, molecular composition, and biomechanical properties, far less attention has been paid to their content of trace elements. Tendons and ligaments are generally rich in calcium, sulfur, and phosphorus, although there are intriguing differences between one tendon/ligament and another. Furthermore, there can be significant regional variations that correlate with the presence or absence of fibrocartilage in the “wraparound” regions of tendons or ligaments, where they change direction and press against bone. Here, their sulfate and calcium contents are particularly high. This is undoubtedly associated with the high levels of proteoglycans that are found in these cartilaginous tissues and the occasional presence of sesamoid bones within them.  相似文献   

5.
《Journal of biomechanics》2014,47(16):3794-3798
Tendons are able to transmit high loads efficiently due to their finely optimized hierarchical collagen structure. Two mechanisms by which tendons respond to load are collagen fibril sliding and deformation (stretch). Although many studies have demonstrated that regional variations in tendon structure, composition, and organization contribute to the full tendon׳s mechanical response, the location-dependent response to loading at the fibril level has not been investigated. In addition, the instantaneous response of fibrils to loading, which is clinically relevant for repetitive stretch or fatigue injuries, has also not been studied. Therefore, the purpose of this study was to quantify the instantaneous response of collagen fibrils throughout a mechanical loading protocol, both in the insertion site and in the midsubstance of the mouse supraspinatus tendon. Utilizing a novel atomic force microscopy-based imaging technique, tendons at various strain levels were directly visualized and analyzed for changes in fibril d-period with increasing tendon strain. At the insertion site, d-period significantly increased from 0% to 1% tendon strain, increased again from 3% to 5% strain, and decreased after 5% strain. At the midsubstance, d-period increased from 0% to 1% strain and then decreased after 7% strain. In addition, fibril d-period heterogeneity (fibril sliding) was present, primarily at 3% strain with a large majority occurring in the tendon midsubstance. This study builds upon previous work by adding information on the instantaneous and regional-dependent fibrillar response to mechanical loading and presents data proposing that collagen fibril sliding and stretch are directly related to tissue organization and function.  相似文献   

6.
Tissue transglutaminase (tTG) is a calcium-dependent enzyme that exerts a variety of physiological functions and is involved in various pathoprocesses. To characterize the role of tTG in disease, simple assays are necessary for detection. We developed a highly sensitive enzyme-linked immunosorbent assay (ELISA) that combines a transamidation step with immunological detection to determine tTG. This assay is based on covalent binding of in vitro activated tTG to N,N′-dimethylated casein and subsequent detection of coupled tTG by specific immunoglobulin G (IgG) antibodies directed against tTG followed by binding of a secondary biotin-labeled antibody. The assay reaches a detection limit of 0.05 ng of tTG/ml. Type 1 and 3 transglutaminases and factor XIII are not detected. By use of this assay, tTG in several cell lines and the stimulatory effect of retinoic acid on tTG expression could be demonstrated. The new assay represents a promising tool for the study of tTG in normal cell physiology and under pathological conditions.  相似文献   

7.
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.  相似文献   

8.
Photoreceptors of the retina adapt to ambient light in a manner that allows them to detect changes in illumination over an enormous range of intensities. We have discovered a novel form of adaptation in mouse rods that persists long after the light has been extinguished and the rod's circulating dark current has returned. Electrophysiological recordings from individual rods showed that the time that a bright flash response remained in saturation was significantly shorter if the rod had been previously exposed to bright light. This persistent adaptation did not decrease the rate of rise of the response and therefore cannot be attributed to a decrease in the gain of transduction. Instead, this adaptation was accompanied by a marked speeding of the recovery of the response, suggesting that the step that rate-limits recovery had been accelerated. Experiments on knockout rods in which the identity of the rate-limiting step is known suggest that this adaptive acceleration results from a speeding of G protein/effector deactivation.  相似文献   

9.
《Reproductive biology》2022,22(1):100616
The oviduct is a dynamic organ that has not been assigned specific functions during advanced pregnancy. However, since changes in the oviductal epithelium during the estrous cycle are attributed mainly to variations in estradiol (E2) levels, and E2 levels increase along pregnancy, we hypothesized that advanced pregnant cows should present changes in the oviductal epithelium. In advanced pregnant cows, the oviducts showed higher leaf-like folds and lower mucosa width and epithelium height than those of cycling animals. Also, PAS-positive apical protrusions and TUNEL-positive extruded cytoplasmic material were observed in advanced pregnant cows. Oviductal fluid from advanced pregnant cows showed lower protein concentration than that from cycling cows. Transglutaminase 2 (TG2) was detected exclusively in oviductal fluid of pregnant cows but not in cells from any stage, whereas its mRNA was detected in different amounts in cells from all stages. This protein was identified by LC/MS-MS and its identity was corroborated by Western blot. The observations in histology of the epithelium and the presence of TG2 in oviductal fluid correlate with high levels of E2 in serum. In conclusion, important histological changes in the oviductal epithelium and secretion of TG2 to the oviductal fluid appear to be triggered by the high E2 levels exclusive of advanced pregnancy.  相似文献   

10.
Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development.  相似文献   

11.
Ruptures of the rotator cuff tendons of the human shoulder are a common incidence and lead to functional impairment of the four muscles connected to the cuff, entailing profound changes of their cellular tissue composition. Most importantly, such tendon tears lead to atrophy, fatty degeneration and fibrosis of the corresponding muscles. The muscle most commonly affected with such changes is the M. supraspinatus. The present study uses biopsy samples from the supraspinatus muscle of 12 elderly patients and 6 controls to examine the rupture-induced muscle change at both the cellular and the intracellular (ultrastructural) levels. Amounts of fatty tissue, connective tissue and muscle were assessed by light microscopy-based morphometry and stereology. Stereology of electron micrographs was employed to determine volume densities of muscle fibre mitochondria, myofibrils and intracellular lipid. Results demonstrate that the supraspinatus muscles of patients with a massive rupture contain significantly higher amounts not only of fatty tissue but also of intracellular lipid than those of control subjects. These patients further exhibit a major decrease in relative amounts of myofibrils, thus confirming that change of intracellular composition is a major component of the observed muscle degeneration. The results contribute to establish the true spectrum of supraspinatus muscle damage in humans induced by tendon rupture.  相似文献   

12.
BackgroundCollagen fiber re-alignment and uncrimping are two postulated mechanisms of tendon structural response to load. Recent studies have examined structural changes in response to mechanical testing in a postnatal development mouse supraspinatus tendon model (SST), however, those changes in the mature mouse have not been characterized. The objective of this study was to characterize collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse SST.Method of approachA tensile mechanical testing set-up integrated with a polarized light system was utilized for alignment and mechanical analysis. Local collagen fiber crimp frequency was quantified immediately following the designated loading protocol using a traditional tensile set up and a flash-freezing method. The effect of number of preconditioning cycles on collagen fiber re-alignment, crimp frequency and mechanical properties in midsubstance and insertion site locations were examined.ResultsDecreases in collagen fiber crimp frequency were identified at the toe-region of the mechanical test at both locations. The insertion site re-aligned throughout the entire test, while the midsubstance re-aligned during preconditioning and the test's linear-region. The insertion site demonstrated a more disorganized collagen fiber distribution, lower mechanical properties and a higher cross-sectional area compared to the midsubstance location.ConclusionsLocal collagen fiber re-alignment, crimp behavior and mechanical properties were characterized in a mature mouse SST model. The insertion site and midsubstance respond differently to mechanical load and have different mechanisms of structural response. Additionally, results support that collagen fiber crimp is a physiologic phenomenon that may explain the mechanical test toe-region.  相似文献   

13.
Summary Tissue transglutaminase is an intracellular enzyme without established physiological function. Biochemically it can be detected in all organs, but no systematic in situ localization has been carried out so far. Here we report the immunohistochemical localization of transglutaminase in human tissues using an affinity purified, monospecific anti-human transglutaminase antibody. It is shown that the widespread organ distribution of the enzyme is the consequence of its occurrence in ubiquitous cell types such as endothelium and smooth muscle cells. Some organ-specific cell types express the enzyme constitutively (mesangial cells, renomedullary interstitial cells, thymic subcapsular epithelium, colonic pericryptal fibroblasts), while in others it seems to be induced either by external stimuli (epithelium of the female breast) or as part of their differentiation/maturation program (developing nephrons, enterocytes of the small intestine). The presence of tissue transglutaminase can be demonstrated in derivatives of all germ layers and in the trophoblast. The functional implications of these findings are presently unknown; however, based on its distribution the role of this enzyme in compartmentation and preservation of tissue integrity against stress may be suggested.Part of this work was presented at the symposium Transglutaminase and Protein Crosslinking Reactions (Noble Conference in Cellular and Molecular Biology, March 29–April 1, 1987, Miami, Fla.), and at the 1st International Symposium on Post-translational Modifications of Proteins and Ageing (Lacco Ameno d'Ischia, Naples, Italy, May 11–15, 1987)  相似文献   

14.
Energy-storing tendons including the equine superficial digital flexor tendon (SDFT) contribute to energetic efficiency of locomotion at high-speed gaits, but consequently operate close to their physiological strain limits. Significant evidence of exercise-induced microdamage has been found in the SDFT which appears not to exhibit functional adaptation; the degenerative changes have not been repaired by the tendon fibroblasts (tenocytes), and are proposed to accumulate and predispose the tendon to rupture during normal athletic activity. The anatomically opposing common digital extensor tendon (CDET) functions only to position the digit, experiencing significantly lower levels of strain and is rarely damaged by exercise. A number of studies have indicated that tenocytes in the adult SDFT are less active in collagen synthesis and turnover than those in the immature SDFT or the CDET. Gap junction intercellular communication (GJIC) is known to be necessary for strain-induced collagen synthesis by tenocytes. We postulate therefore that expression of GJ proteins connexin 43 and 32 (Cx43; Cx32), GJIC and associated collagen expression levels are high in the SDFT and CDET of immature horses, when the SDFT in particular grows significantly in cross-sectional area, but reduce significantly during maturation in the energy-storing tendon only. The hypothesis was tested using tissue from the SDFT and CDET of foetuses, foals, and young adult Thoroughbred horses. Cellularity and the total area of both Cx43 and Cx32 plaques/mm2 of tissue reduced significantly with maturation in each tendon. However, the total Cx43 plaque area per tenocyte significantly increased in the adult CDET. Evidence of recent collagen synthesis in the form of levels of neutral salt-soluble collagen, and collagen type I mRNA was significantly less in the adult compared with the immature SDFT; procollagen type I amino-propeptide (PINP) and procollagen type III amino-propeptide (PIIINP) levels per mm2 of tissue and PINP expression per tenocyte also decreased with maturation in the SDFT. In the CDET PINP and PIIINP expression per tenocyte increased in the adult, and exceeded those in the adult SDFT. The level of PINP per mm2 was greater in the adult CDET than in the SDFT despite the higher cellularity of the latter tendon. In the adult SDFT, levels of PIIINP were greater than those of PINP, suggesting relatively greater synthesis of a weaker form of collagen previously associated with microdamage. Tenocytes in monolayers showed differences in Cx43 and Cx32 expression compared with those in tissue, however there were age- and tendon-specific phenotypic differences, with a longer time for 50% recovery of fluorescence after photobleaching in adult SDFT cells compared with those from the CDET and immature SDFT. As cellularity reduces following growth in the SDFT, a failure of the remaining tenocytes to show a compensatory increase in GJ expression and collagen synthesis may explain why cell populations are not able to respond to exercise and to repair microdamage in some adult athletes. Enhancing GJIC in mature energy-storing tendons could provide a strategy to increase the cellular synthetic and reparative capacity.  相似文献   

15.
Tendons with different in vivo functions are known to have different baseline biomechanics, biochemistry and ultrastructure, and these can be affected by changes in loading. However it is not know whether different tendon types respond in the same, or different ways, to changes in loading.This study performed in vitro un-loading (stress deprivation) in culture on ovine medial extensor tendons (MET, a positional tendon), and superficial and deep digital flexor tendons (SDFTs and DDFTs, with energy-storing and intermediate functions respectively), for 21 days (n = 14 each). Tensile strength and elastic modulus were then measured, followed by biochemical assays for sulphated glycosaminoglycan (sGAG) and hydroxyproline content. Histological inspection for cell morphology, cell density and collagen alignment was also performed.The positional tendon (MET) had a significant reduction (∼50%) in modulus and strength (P < 0.001) after in vitro stress-deprivation, however there were no significant effects on the energy-storing tendons (SDFT and DDFT). In contrast, sGAG was not affected in the MET, but was reduced in the SDFT and DDFT (P < 0.001). All tendons lost compactness and collagen organisation, and had reduced cell density, but these were more rapid in the MET than the SDFT and DDFT.These results suggest that different tendon types respond to identical stimuli in different ways, thus; (i) the results from an experiment in one tendon type may not be as applicable to other tendon types as previously thought, (ii) positional tendons may be particularly vulnerable to clinical stress-deprivation, and (iii) graft tendon source may affect the biological response to loading in ligament and tendon reconstruction.  相似文献   

16.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.  相似文献   

17.
朱智慧  胡敏杰  常长青  彭金荣 《遗传》2012,34(9):1174-1180
基因leg1(liver-enriched gene 1)首先在斑马鱼中作为肝脏富集表达基因被鉴定。进一步的研究揭示leg1编码的Leg1蛋白代表一类新型外分泌蛋白, 它在斑马鱼胚期肝脏生长发育过程中起关键作用。小鼠leg1(mu-leg1)是斑马鱼leg1(zb-leg1)的直系同源基因, 二者编码的蛋白氨基酸序列相似性为31%。文章通过巢式PCR从成年小鼠肝脏中成功克隆了mu-leg1的cDNA序列, 并对该基因在成年小鼠不同组织中的表达特征进行分析和鉴定。Northern印迹杂交和半定量RT-PCR分析结果显示, mu-leg1在成年小鼠小肠中而非肝脏中富集表达。此外, 用制备的mu-Leg1多克隆抗体进行Western印迹杂交, 结果显示mu-Leg1也是一个分泌蛋白。同时, 还建立了mu-leg1基因条件性剔除杂合子小鼠。这些材料为今后深入研究和探讨mu-Leg1蛋白的生化功能奠定了基础。  相似文献   

18.
Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment.  相似文献   

19.
Summary High cell density is required for high procollagen expression (50% of total protein synthesis) in primary avian tendon (PAT) cells but the signaling mechanism that triggers this response has been difficult to decipher. By using a quantitative in situ hybridization assay for procollagen mRNA, cell density dependent changes in procollagen expression can be followed at the single cell level. PAT cells can then be shown to respond to the presence of their neighbors over ∼1-mm distance. The cell density signal remains effective independent of the medium volume to cell ratio but becomes sensitive to dispersion and dilution when the medium is agitated. PAT cells respond to a reduction in cell density, when neighboring cells are scraped away, by outgrwoth (∼1 mm) and reestablishment of a cell density gradient in cellular procollagen mRNA levels. However, removing neighboring cells while preventing migration off of their own extracellular matrix retards the drop in procollagen mRNA levels. The evidence, taken as a whole, is consistent with a model whereby the cell density signal is a loosely bound component of the cell layer thereby restricting its diffusion to two dimensions but making it susceptible to dispersion by medium agitation. This work was supported in part by grant CA 37958 from the National Institutes of Health, Bethesda, MD, and in part by the Office of Health and Environmental Research, U.S. Dept. of Energy, Washington, DC, under contract DE-AC03-76SF00098.  相似文献   

20.
Inflammation plays an essential role in atherosclerosis and post-angioplasty restenosis and the synthesis and release of inflammatory cytokines from vascular smooth muscle cells is an important contributor to these pathologies. It is assumed that drugs that prevent the overproduction of inflammatory cytokines may inhibit cardiovascular disorders. In the present study, the effects of a water-soluble antioxidant, salvianolic acid B (Sal B), derived from a Chinese herb, on the expression of cyclooxygenase (COX) in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMCs) and in the aortas of cholesterol-fed apoE deficient mice were investigated. In unstimulated HASMCs, COX-2 mRNA and protein were almost undetectable, but were strongly upregulated in response to LPS. In contrast, HASMCs with or without LPS treatment showed constitutive expression of COX-1 mRNA and protein. The activation of COX-2 protein synthesis in LPS-stimulated HASMCs was shown to involve the activation of the extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK), and p38 mitogen-activated protein kinase pathway. Incubation of HASMCs with Sal B before LPS stimulation resulted in pronounced downregulation of COX-2 expression. Sal B treatment suppressed ERK1/2 and JNK phosphorylation and attenuated the increase in prostaglandin E(2) production and NADPH oxidase activity in LPS-treated HASMCs. When apoE-deficient mice were fed a 0.15% cholesterol diet with or without supplementation with 0.3% Sal B for 12 weeks, the intima/media area ratio in the thoracic aortas was significantly reduced in the Sal B group (0.010 +/- 0.009%) compared to the apoE-deficient group (0.114 +/- 0.043%) and there was a significant reduction in COX-2 protein expression in the thickened intima. These results demonstrate that Sal B has anti-inflammatory properties and may explain its anti-atherosclerotic properties. This new mechanism of action of Sal B, in addition to its previously reported inhibition of LDL oxidation, may help explain its efficacy in the treatment of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号