首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

2.
3.
Amlodipine, alone or in combination with other drugs, was successfully used to treat hypertension. Our aim was to evaluate the potential of amlodipine (Am) to restore endothelial dysfunction induced by irreversibly glycated low density lipoproteins (AGE-LDL), an in vitro model mimicking the diabetic condition. Human endothelial cells (HEC) from EA.hy926 line were incubated with AGE-LDL in the presence/absence of Am and the oxidative and inflammatory status of the cells was evaluated along with the p38 MAPK and NF-κB signalling pathways. The cellular NADPH activity, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine levels in the culture medium and the adhesion of human monocytes to HEC were measured by chemiluminescence, UHPLC, Western Blot and spectrofluorimetric techniques. The gene expression of NADPH subunits (p22phox, NOX4), eNOS and inflammatory molecules (MCP-1, VCAM-1) were determined by Real Time PCR, while the protein expression of p22phox, MCP-1, iNOS, phospho-p38 MAPK and phospho-p65 NF-κB subunit were measured by Western Blot. Results showed that in HEC incubated with AGE-LDL, Am led to: (i) decrease of the oxidative stress: by reducing p22phox, NOX4, iNOS expression, NADPH oxidase activity, 4-HNE and 3-nitrotyrosine levels; (ii) decrease of the inflammatory stress: by the reduction of MCP-1 and VCAM-1 expression, as well as of the number of monocytes adhered to HEC; (iii) inhibition of ROS-sensitive signalling pathways: by decreasing phosphorylation of p38 MAPK and p65 NF-κB subunits. In conclusion, the reported data demonstrate that amlodipine may improve endothelial dysfunction in diabetes through anti-oxidant and anti-inflammatory mechanisms.  相似文献   

4.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.  相似文献   

5.
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.  相似文献   

6.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

7.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

8.
Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22phox, creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H2O2 production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22phox Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O2 generation. In contrast, Nox4 released H2O2 and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.The family of NADPH oxidases consists of seven members termed Nox/Duox that differ in their tissue expression profiles, modes of activation, reactive oxygen species (ROS) outputs, and physiological functions. Understanding their distinguishing features is a prerequisite for rational inhibitor design and thus targeted intervention in ROS-mediated pathophysiologies (4). The coexpression of different Nox isoforms, each with potentially distinct functional profiles, in the same cell type necessitates a more discriminating approach than application of pan-Nox inhibitors. Detailed structure-function studies are necessary to identify unique regions and their impact with respect to catalytic function or localization of the enzyme. All Nox/Duox enzymes share a Nox backbone with six predicted transmembrane domains and an intracellular carboxyl-terminal domain which harbors FAD and NADPH binding sites. Nox5 and Duox1/2 enzymes contain additional structural elements such as amino terminal EF-hand motifs, a hallmark of their regulation by the intracellular calcium concentration (13, 30).The founding member of the NADPH oxidase family, the phagocyte oxidase, consists of membrane-bound Nox2 in a complex with the smaller subunit p22phox (3). Heterodimerization of these two proteins is required for maturation and translocation of the enzyme complex to the plasma membrane or to intracellular vesicles. The Nox family members Nox1, Nox3, and Nox4 follow this paradigm (1, 14, 21, 25, 31). Heterodimer formation and association of the Nox/p22phox complex at particular cellular membranes is essential for catalytic activity, i.e., for ROS generation. Nox2, and to a lesser degree Nox1 and Nox3, remain dormant under resting conditions and rely on stimulus-dependent translocation and assembly of oxidase components such as p47phox and p67phox, or NoxO1 and NoxA1 in the case of Nox1 and Nox3 (16). These steps, together with activation and translocation of the GTPase Rac, ultimately lead to the assembled, catalytically active oxidase and to ROS generation.Nox4 differs from the usual theme of multimeric assembly of active NADPH oxidases found in Nox1 to Nox3 (21, 22, 28, 32). Constitutive H2O2 production by Nox4 localized at perinuclear vesicles has been reported (1, 21, 28). Since NADPH oxidases catalyze the one-electron reduction of molecular oxygen to superoxide anion, the current dogma suggests that Nox4 generates intracellular superoxide. The superoxide produced will then dismutate rapidly to H2O2, diffusing from the cell into the extracellular milieu. Cytosolic proteins, which regulate the activity of Nox1 to Nox3 by binding to the carboxyl-terminal domains of Nox1 to Nox3, seem to be irrelevant for Nox4 function. The membrane-bound subunit p22phox is to date the only known protein associated with Nox1 to Nox4. Heterodimerization, translocation, and enzymatic function of these oxidases require p22phox. Recent structure-function analyses of complexes between Nox2 or Nox4 and the subunit p22phox documented specific regions and amino acid residues in p22phox necessary for complex formation and oxidase activity (35, 37). Interestingly, a p22phox mutant (p22phox Y121H) is capable of distinguishing between Nox1 to Nox3 and Nox4 by forming a functional complex only with Nox4, further suggesting unique structural features in Nox4 (35).In this study, we expand structure-function analysis of the oxidase complex by comparing Nox4/Nox2 chimeric enzymes with respect to NADPH oxidase activity, type of reactive oxygen species produced, requirement for additional oxidase components, and detailed subcellular localization.  相似文献   

9.
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.  相似文献   

10.
NADPH oxidase comprises both cytosolic and membrane-bound subunits, which, when assembled and activated, initiate the transfer of electrons from NADPH to molecular oxygen to form superoxide. This activity, known as the respiratory burst, is extremely important in the innate immune response as indicated by the disorder chronic granulomatous disease. The regulation of this enzyme complex involves protein-protein and protein-lipid interactions as well as phosphorylation events. Previously, our laboratory demonstrated that the small membrane subunit of the oxidase complex, p22phox, is phosphorylated in neutrophils and that its phosphorylation correlates with NADPH oxidase activity. In this study, we utilized site-directed mutagenesis in a Chinese hamster ovarian cell system to determine the phosphorylation sites within p22phox. We also explored the mechanism by which p22phox phosphorylation affects NADPH oxidase activity. We found that mutation of threonine 147 to alanine inhibited superoxide production in vivo by more than 70%. This mutation also blocked phosphorylation of p22phox in vitro by both protein kinase C-α and -δ. Moreover, this mutation blocked the p22phox-p47phox interaction in intact cells. When phosphorylation was mimicked in vivo through mutation of Thr-147 to an aspartyl residue, NADPH oxidase activity was recovered, and the p22phox-p47phox interaction in the membrane was restored. Maturation of gp91phox was not affected by the alanine mutation, and phosphorylation of the cytosolic component p47phox still occurred. This study directly implicates threonine 147 of p22phox as a critical residue for efficient NADPH oxidase complex formation and resultant enzyme activity.  相似文献   

11.

Background

We recently reported that ER stress plays a key role in vascular endothelial dysfunction during hypertension. In this study we aimed to elucidate the mechanisms by which ER stress induction and oxidative stress impair vascular endothelial function.

Methodology/principal findings

We conducted in vitro studies with primary endothelial cells from coronary arteries stimulated with tunicamycin, 1 μg/mL, in the presence or absence of two ER stress inhibitors: tauroursodeoxycholic acid (Tudca), 500 μg/mL, and 4-phenylbutyric acid (PBA), 5 mM. ER stress induction was assessed by enhanced phosphorylation of PERK and eIF2α, and increased expression of CHOP, ATF6 and Grp78/Bip. The ER stress induction increased p38 MAPK phosphorylation, Nox2/4 mRNA levels and NADPH oxidase activity, and decreased eNOS promoter activity, eNOS expression and phosphorylation, and nitrite levels. Interestingly, the inhibition of p38 MAPK pathway reduced CHOP and Bip expressions enhanced by tunicamycin and restored eNOS promoter activation as well as phosphorylation. To study the effects of ER stress induction in vivo, we used C57BL/6J mice and p47phox−/− mice injected with tunicamycin or saline. The ER stress induction in mice significantly impaired vascular endothelium-dependent and independent relaxation in C57BL/6J mice compared with p47phox−/− mice indicating NADPH oxidase activity as an intermediate for ER stress in vascular endothelial dysfunction.

Conclusion/significance

We conclude that chemically induced ER stress leads to a downstream enhancement of p38 MAPK and oxidative stress causing vascular endothelial dysfunction. Our results indicate that inhibition of ER stress could be a novel therapeutic strategy to attenuate vascular dysfunction during cardiovascular diseases.  相似文献   

12.
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with p22phox and gp91phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.  相似文献   

13.
14.
The Nef protein of the human immunodeficiency virus type 1 (HIV‐1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV‐1 Nef in human macrophages cell line modulates in bi‐phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef‐induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef‐mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3‐binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef‐induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47phox to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef‐mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3‐kinase (PI3K) inhibited both the Nef‐induced p47phox phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K. J. Cell. Biochem. 106: 812–822, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47phox, to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47phox and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47phox recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47phox/dynamin 2 association (change in the dissociation constant (Kd) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47phox, and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47phox to CEMs and subsequent ROS production in lung endothelium.  相似文献   

16.
Nox1 and Nox4, homologues of the leukocyte NADPH oxidase subunit Nox2 (gp91phox) mediate superoxide anion formation in various cell types. However, their interactions with other components of the NADPH oxidase are poorly defined. We determined whether a direct interaction of Nox1 and Nox4 with the p22phox subunit of the NADPH oxidase occurs. Using confocal microscopy, co-localization of p22phox with Nox1, Nox2, and Nox4 was observed in transiently transfected vascular smooth muscle cells (VSMC) and HEK293 cells. Plasmids coding for fluorescent fusion proteins of p22phox and the Nox proteins with cyan- and yellow-fluorescent protein (cfp and yfp, respectively) were constructed and expressed in VSMC and HEK293 cells. The cfp-tagged p22phox expression level increased upon cotransfection with Nox1 or Nox4. Protein-protein interaction between the fluorescent fusion proteins of p22phox and the Nox partners was observed using the fluorescence resonance energy transfer technique. Immunoprecipitation of native Nox1 from human VSMC revealed co-precipitation of p22phox. Immunoprecipitation from transfected HEK293 cells revealed co-precipitation of native p22phox with yfp-tagged Nox1, Nox2, and Nox4. Following mutation of a histidine (corresponding to the position 115 in human Nox2) to leucine, this interaction was abolished. Transfection of rat p22phox (but not Noxo1 and Noxa1) increased the radical generation in cells expressing Nox4. We provide evidence that p22phox directly interacts with Nox1 and Nox4, to form an superoxide-generating NADPH oxidase and demonstrate that mutation of the potential heme binding site in the Nox proteins disrupts the complex formation of Nox1 and Nox4 with p22phox.  相似文献   

17.
Molecular mechanisms underlying the generation of reactive oxygen species in LL-37-stimulated cells are poorly understood. Previously, we demonstrated that in human fibroblasts the exposure to WKYMVm induced p47phox phosphorylation and translocation and, in turn, NADPH oxidase activation. These effects were mediated by the activation of the Formyl-peptide receptor-like 1 (FPRL1) and the downstream signaling involved ERKs phosphorylation and PKCα- and PKCδ-activation. Since LL-37 uses FPRL1 as a receptor to mediate its action on several cell types, we investigated in LL-37-stimulated IMR90 cells molecular mechanisms involved in NADPH-dependent superoxide generation. The exposure to LL-37, which is expressed in fibroblasts, induced ERKs activation, p47phox phosphorylation and translocation as well as NADPH oxidase activation. These effects were prevented by pertussis toxin, PD098059 and WRWWWW, a FPRL1-selective antagonist. Furthermore, the stimulation with LL-37 of HEK293 cells, transfected to stably express FPRL1, induced a rapid activation of ERKs and p47phox phosphorylation.  相似文献   

18.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

19.
As a gasotransmitter, hydrogen sulfide (H2S) plays a crucial role in regulating the signaling pathway mediated by oxidative stress. The purpose of this study was to investigate the protective effects of H 2S on uranium‐induced rat hepatocyte cytotoxicity. Primary hepatocytes were isolated and cultured from Sprague Dawley rat liver tissues. After pretreating with sodium hydrosulfide (an H 2S donor) for 1 hour (or GKT‐136901 for 30 minutes), hepatocytes were treated by uranyl acetate for 24 hours. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA), NADPH oxidase 4 (Nox4), and p38 mitogen‐activated protein kinase (p38 MAPK) phosphorylation were respectively determined. The effects of direct inhibition of Nox4 expression by GKT‐136901 (a Nox4 inhibitor) on ROS and phospho‐p38 MAPK levels were examined in uranium‐treated hepatocytes. The results implicate that H 2S can afford protection of rat hepatocytes against uranium‐induced adverse effects through attenuating oxidative stress via prohibiting Nox4/ROS/p38 MAPK signaling.  相似文献   

20.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47phox-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior.Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67phox, which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5.Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号