首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tRNAGly/glycyl-tRNA synthetase (GlyRS) system belongs to the so-called ‘class II aminoacyl-tRNA synthetase system’ in which tRNA identity elements are assured by rather few and simple determinants mostly located in the tRNA acceptor stem. Regarding evolutionary aspects, the tRNAGly/GlyRS system is a special case. There exist two different types of GlyRS, namely an archaebacterial/human type and a eubacterial type reflecting an evolutionary divergence within this system.Here we report the crystal structure of a human tRNAGly acceptor stem microhelix at 1.2 Å resolution. The local geometric parameters of the microhelix and the water network surrounding the RNA are presented. The structure complements the previously published Escherichia coli tRNAGly aminoacyl stem structure.  相似文献   

2.
tRNA identity elements assure the correct aminoacylation of tRNAs by the aminoacyl-tRNA synthetases with the cognate amino acid. The tRNAGly/glycyl-tRNA sythetase system is member of the so-called ‘class II system’ in which the tRNA determinants consist of rather simple elements. These are mostly located in the tRNA acceptor stem and in the glycine case additionally the discriminator base at position 73 is required. Within the glycine-tRNA synthetases, the archaebacterial/human and the eubacterial sytems differ with respect to their protein structures and the required tRNA identity elements, suggesting a unique evolutionary divergence.In this study, we present a comparison between the crystal structures of the eubacterial Escherichia coli and the human tRNAGly acceptor stem microhelices and their surrounding hydration patterns.  相似文献   

3.
tRNA identity elements assure the correct aminoacylation of tRNAs by the cognate aminoacyl-tRNA synthetases. tRNASer belongs to the so-called class II system, in which the identity elements are rather simple and are mostly located in the acceptor stem region, in contrast to ‘class I’, where tRNA determinants are more complex and are located within different regions of the tRNA.The structure of an Escherichia coli tRNASer acceptor stem microhelix was solved by high resolution X-ray structure analysis. The RNA crystallizes in the space group C2, with one molecule per asymmetric unit and with the cell constants a = 35.79, b = 39.13, c = 31.37 Å, and β = 111.1°. A defined hydration pattern of 97 water molecules surrounds the tRNASer acceptor stem microhelix. Additionally, two magnesium binding sites were detected in the tRNASer aminoacyl stem.  相似文献   

4.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem.The tRNAGly/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNAGly acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNAGly aminoacyl stem from Thermus thermophilus at 1.6 Å resolution and provide insight into the RNA geometry and hydration.  相似文献   

5.
Due to the redundancy of the genetic code there exist six mRNA codons for arginine and several tRNAArg isoacceptors which translate these triplets to protein within the context of the mRNA. The tRNA identity elements assure the correct aminoacylation of the tRNA with the cognate amino acid by the aminoacyl-tRNA-synthetases. In tRNAArg, the identity elements consist of the anticodon, parts of the D-loop and the discriminator base. The minor groove of the acceptor stem interacts with the arginyl-tRNA-synthetase. We crystallized different Escherichia coli tRNAArg acceptor stem helices and solved the structure of the tRNAArg isoacceptor RR-1660 microhelix by X-ray structure analysis. The acceptor stem helix crystallizes in the space group P1 with the cell constants a = 26.28, b = 28.92, c = 29.00 Å, α = 105.74, β = 99.01, γ = 97.44° and two molecules per asymmetric unit. The RNA hydration pattern consists of 88 bound water molecules. Additionally, one glycerol molecule is bound within the interface of the two RNA molecules.  相似文献   

6.
We solved the X-ray structures of two Escherichia coli tRNASer acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNASer microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.  相似文献   

7.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNAGln was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNAGln charging. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.  相似文献   

8.
tRNAs are aminoacylated by the aminoacyl-tRNA synthetases. There are at least 20 natural amino acids, but due to the redundancy of the genetic code, 64 codons on the mRNA. Therefore, there exist tRNA isoacceptors that are aminoacylated with the same amino acid, but differ in their sequence and in the anticodon. tRNA identity elements, which are sequence or structure motifs, assure the amino acid specificity. The Seryl-tRNA synthetase is an enzyme that depends on rather few and simple identity elements in tRNASer. The Seryl-tRNA-synthetase interacts with the tRNASer acceptor stem, which makes this part of the tRNA a valuable structural element for investigating motifs of the protein–RNA complex. We solved the high resolution crystal structures of two tRNASer acceptor stem microhelices and investigated their interaction with the Seryl-tRNA-synthetase by superposition experiments. The results presented here show that the amino acid side chains Ser151 and Ser156 of the synthetase are interacting in a very similar way with the RNA backbone of the microhelix and that the involved water molecules have almost identical positions within the tRNA/synthetase interface.  相似文献   

9.
Aminoacyl-tRNA synthetases catalyze the formation of aminoacyl-tRNAs. Seryl-tRNA synthetase is a class II synthetase, which depends on rather few and simple identity elements in tRNA(Ser) to determine the amino acid specificity. tRNA(Ser) acceptor stem microhelices can be aminoacylated with serine, which makes this part of the tRNA a valuable tool for investigating the structural motifs in a tRNA(Ser)-seryl-tRNA synthetase complex. A 1.8A-resolution tRNA(Ser) acceptor stem crystal structure was superimposed to a 2.9A-resolution crystal structure of a tRNA(Ser)-seryl-tRNA synthetase complex for a visualization of the binding environment of the tRNA(Ser) microhelix.  相似文献   

10.
Histidine tRNAs (tRNAHis) are unique in that they possess an extra 5′-base (G-1) not found in other tRNAs. Deletion of G-1 results in at least a 250-fold reduction in the rate of histidine charging in vitro. To better understand the role of the G-1 nucleotide in defining the structure of tRNAHis, and to correlate structure with cognate amino acid charging, NMR and molecular dynamics (MD) studies were performed on the wild-type and a ΔG-1 mutant Escherichia coli histidine tRNA acceptor stem microhelix. Using NMR-derived distance restraints, global structural characteristics are described and interpreted to rationalize experimental observations with respect to aminoacylation activity. The quality of the NMR-derived solution conformations of the wild-type and ΔG-1 histidine microhelices (micro helixHis) is assessed using a variety of MD-based computational protocols. Most of the duplex regions of the acceptor stem and the UUCG tetraloop are well defined and effectively superimposable for the wild-type and ΔG-1 mutant microhelixHis. Differences, however, are observed at the end of the helix and in the single-stranded CCCA-3′ tail. The wild-type microhelixHis structure is more well defined than the mutant and folds into a ‘stacked fold-back’ conformation. In contrast, we observe fraying of the first two base pairs and looping back of the single-stranded region in the ΔG-1 mutant resulting in a much less well defined conformation. Thus the role of the extra G-1 base of the unique G-1:C73 base pair in tRNAHis may be to prevent end-fraying and stabilize the stacked fold-back conformation of the CCCA-3′ region.  相似文献   

11.
S. EPIDERMIDIS contains an unusual species of glycyl-tRNA (tRNAGlyI) which does not function in protein synthesis but which is able to participate in peptidoglycan synthesis1. During sequence analysis it became apparent that the original material contained two distinct iso-accepting species (tRNAGlyIA and tRNAGlyIB) differing by six base changes and the presence of one additional base in the dihydrouridine loop of tRNAGlyIB. Using the techniques developed by Sanger et al.2–5 the complete sequences of both species have been determined and provide an interesting comparison with published6 tRNA structures. A complete account of the sequence analysis will be published elsewhere.  相似文献   

12.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem. The tRNA(Gly)/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNA(Gly) acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNA(Gly) aminoacyl stem from Thermus thermophilus at 1.6? resolution and provide insight into the RNA geometry and hydration.  相似文献   

13.
The effect of aminoacylation and ternary complex formation with elongation factor Tu•GTP on the tertiary structure of yeast tRNAPhe was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNAPhe does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNAPhe with elongation factor Tu•GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNAPhe upon binding to elongation factor Tu•GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNAPhe•elongation factor Tu•GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNAPhe preserves its typical L-shaped tertiary structure in the complex. At high (> 10−4 M) ligand concentrations a complex between tRNAPhe and elongation factor Tu•GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNAPhe and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.  相似文献   

14.
Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed.  相似文献   

15.
tRNA identity elements determine the correct aminoacylation by the cognate aminoacyl-tRNA synthetase. In class II aminoacyl tRNA synthetase systems, tRNA specificity is assured by rather few and simple recognition elements, mostly located in the acceptor stem of the tRNA. Here we present the crystal structure of an Escherichia coli tRNA(Gly) aminoacyl stem microhelix at 2.0 A resolution. The tRNA(Gly) microhelix crystallizes in the space group P3(2)21 with the cell constants a=b=35.35 A, c=130.82 A, gamma=120 degrees . The helical parameters, solvent molecules and a potential magnesium binding site are discussed.  相似文献   

16.
17.
Normal and Mutant Glycine Transfer RNAs   总被引:21,自引:0,他引:21  
THE glycine-specific tRNAs of E. coli can be grouped into three subspecies which are separated by chromatography on benzoylated DEAE cellulose (BDC): tRNAGly1 (GGG), tRNAGly2 (GGA/G) and tRNAGly3 (GGU/C)1,2. The tRNAGly1 and tRNAGly2 are specified by the genes, glyU and glyT, respectively, which have been located at 55 and 77 minutes on the E. coli chromosome. Suppressors of tryptophan A gene (trpA) missense mutations and partial diploid strains have been used extensively to characterize the glycine tRNA structural genes (Table 1)1–3. A common property of these suppressor mutations is that the altered tRNAGly is no longer aminoacylated at the normal rate by the glycyl tRNA synthetase (GRS). When ordinary loading conditions are used virtually none of the suppressor tRNA species are amino-acylated. These studies have shown that single gene copies are normally present at the glyT and glyU loci.  相似文献   

18.
The incorporation of histidine by two competing histidine isoaccepting tRNA species into rabbit globin in a rabbit reticulocyte lysate was studied. The results show that incorporation by each isoacceptor is in proportion to its abundance, indicating that neither species is used preferentially. In a previous study (McNamara and Smith (1978) J. Biol. Chem. 253, 5964–5970) we showed that neither tRNAHis species responds preferentially to either of the histidine codons and that there is no preferential incorporation by either species into any histidine-containing site in either globin subunit. The Q base modification is found in one tRNAHis isoacceptor while the other is hypomodified in this this characteristic. The results indicate that none of the aspects of tRNA function in translation that have been examined is affected by Q base.  相似文献   

19.
We isolated several mutants with nucleotide substitutions in alanine tRNA (tRNAAla) that resulted in glutamine tRNA (tRNAGli) acceptor identity in Escherichia coli. These substitutions were in three regions of tRNA structure not previously associated with tRNAGln acceptor identity. Only the phosphate-sugar backbone moieties of these nucleotides interact with the enzyme in the previously determined X-ray crystal structure of the complex between tRNAGln and glutaminyl-tRNA synthetase. We conclude that these sequence-dependent phosphate-sugar backbone interactions contribute to tRNAGln identity, and argue that the interactions help communicate enzyme recognition of the anticodon to the acceptor end of the tRNA and the catalytic center of the enzyme.  相似文献   

20.
The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号