首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into brown and white adipocytes in comparison to Adipose tissue derived MSCs (AD-MSCs) were investigated in order to characterize their potency for future cell therapies. MSCs were isolated from ten UCB samples and six liposuction materials. MSCs were differentiated into white and brown adipocytes after characterization by flow cytometry. Differentiated adipocytes were stained with Oil Red O and hematoxylin/eosin. The UCP1 protein levels in brown adipocytes were investigated by immunofluoresence and western blot analysis. Cells that expressed mesenchymal stem cells markers (CD34?, CD45?, CD90+ and CD105+) were successfully isolated from UCB and adipose tissue. Oil Red O staining demonstrated that white and brown adipocytes obtained from AD-MSCs showed 85 and 61% of red pixels, while it was 3 and 1.9%, respectively for white and brown adipocytes obtained from UCB-MSCs. Fluorescence microscopy analysis showed strong uncoupling protein 1 (UCP1) signaling in brown adipocytes, especially which were obtained from AD-MSCs. Quantification of UCP1 protein amount showed 4- and 10.64-fold increase in UCP1 contents of brown adipocytes derived from UCB-MSCs and AD-MSCs, respectively in comparison to undifferentiated MSCs (P?<?0.004). UCB-MSCs showed only a little differentiation tendency into adipocytes means it is not an appropriate stem cell type to be differentiated into these cell types. In contrast, high differentiation efficiency of AD-MSCs into brown and white adipocytes make it appropriate stem cell type to use in future regenerative medicine of soft tissue disorders or fighting with obesity and its related disorders.  相似文献   

2.
Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs’ protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.  相似文献   

3.
Human mesenchymal stem cells (MSCs), with capacity to differentiate into adipocytes, osteoblasts and chondrocytes, offer potential for the development of novel treatments. A critical question in MSCs biology is whether this cell population possesses a relatively uniform differentiation capability or is comprised of distinct subsets of progenitors committed to differentiate in particular pathways. To quantify the changes during growth of MSCs, we analyzed the mesenchymal phenotype and differentiation ability using a multi-marker PCR with six primer sets specific for CD73, CD90, CD105, CD166, CD45 and β-actin allowing a gel-based differential detection of the PCR products. To determine degree of variability of MSCs populations in terms of proliferation, cell proliferation assays were performed on expanded MSCs up to the sixth passage. At each passage, the osteogenic and adipogenic differentiation potentials of MSCs were verified by culture in inductive media. RT-PCR and cytochemical analysis revealed that, despite the loss of multipotentiality during expansion, certain markers remain expressed, indicating that these markers are unlikely to be reflective of the MSC’s true ‘stem cell’ nature. Our results suggest that decrease in the expression of MSCs specific markers correlates with down-regulation of proliferation ability and differentiation efficiency of MSCs.  相似文献   

4.
Mesenchymal stem cells derived from amniotic fluid have become one of the most potential stem cell source for cell-based therapy for the reason they can be harvested at low cost and without ethical problems. Here, we obtained amniotic fluid stem cells (AFSCs) from ovine amniotic fluid and studied the expansion capacity, cell markers expression, karyotype, and multilineage differentiation ability. In our work, AFSCs were subcultured to passage 62. The cell markers, CD29, CD44, CD73 and OCT4 which analyzed by RT-PCR were positive; CD44, CD73, CD90, CD105, NANOG, OCT4 analyzed by immunofluorescence and flow cytometry were also positive. The growth curves of different passages were all typically sigmoidal. The different passages cells took on a normal karyotype. In addition, AFSCs were successfully induced to differentiate into adipocytes, osteoblasts and chondrocytes. The results suggested that the AFSCs isolated from ovine maintained normal biological characteristics and their multilineage differentiation potential provides many potential applications in cell-based therapies and tissue engineering.  相似文献   

5.
CD105是骨髓间充质干细胞的特征性表型之一。为了研究机体各组织器官也存留有间充质干细胞,首先检测胎儿各组织CD105^ 细胞的分布,进而分离胎儿各组织CD105^ 细胞。将CD105^ 细胞向脂肪和成骨细胞诱导分化。结果表明胎儿心、肝、肺、血管、肌肉、皮肤等组织含有CD105^ 间充质干细胞。在间充质干细胞分化为脂肪细胞时,CD105表达明显下降。地塞米松可以促进脂肪细胞形成并提高了培养液中甘油三酯的含量。而向成骨细胞分化时,诱导的成骨细胞胞浆内外有电子密度高的钙盐沉积。以上结果提示,分布于多种组织的间充质干细胞异常分化可能与疾病的发生有关。  相似文献   

6.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

7.
We isolated a single-cell-derived cell line from a spinal hamartoma, which occurred in a newborn boy and was associated with a rudimentary limb. The maternal cells (HHC-7) differentiated into osteoblasts, chondrocytes, adipocytes, and skeletal muscles when they were cultured in differentiation-inducing media specific to each mesenchymal cell. We isolated a single-cell-derived clonal cell line (Clone K) after transfection with SV40 T antigen. These cells expressed CD73 and CD117, while being negative for expression of CD45. Clone K cells cultured in an osteogenic differentiation medium increased ALP activity and expressed mRNAs for Runx2 and osteocalcin. Treatment with rhBMP-2 induced Clone K cells to differentiate into both osteoblasts and chondrocytes. These cells expressed mRNAs for Sox9 and aggrecan in addition to osteogenic markers. Culture in an adipogenic differentiation medium induced Clone K cells to differentiate into adipocytes, which expressed mRNAs for PPAR2 and a2P. Clone K cells cultured in a serum-depleted medium generated desmin-positive cells and expressed MyoD1 mRNA. Clone K cells exhibited numerous -smooth muscle actin-positive cells; however, treatment with rhBMP-2 decreased their number. Clone K cells, transplanted with a carrier containing rhBMP-2 into the muscles of SCID mice, generated ectopic endochondral bone formation. In these tissues, several osteoblasts and chondrocytes expressed SV40 T antigen, indicating their Clone K cell origin. Thus, Clone K cells are useful tools for analyzing the characteristics of human multipotential mesenchymal progenitors. This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (A.Y. and T.T.) and Grant-in Aid for Scientific Research on Priority Areas from The Ministry of Education, Culture, Sports, Science and Technology of Japan (A.Y.).  相似文献   

8.
The bone marrow mesenchymal stem cells (BMSCs) are multipotent stem cells, which can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit and other mammals, but rarely in poultry. So, in this study, Thirty- to sixty-day old chicken was chosen as experimental animal, to isolate and characterize BMSCs from them. To investigate the biological characteristics of chicken BMSCs, immunofluorescence and RT-PCR were used to detect the characteristic surface markers of BMSCs. Growth curves were drawn in accordance with cell numbers. To assess the differentiation capacity of the BMSCs, cells were induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The surface markers of BMSCs, CD29, CD44, CD31, CD34, CD71 and CD73, were detected by immunofluorescence and RT-PCR assays. The growth curves of different passages were all typically sigmoidal. Karyotype analysis showed that these in vitro cultured cells were genetically stable. In addition, BMSCs were successfully induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The results suggest that the BMSCs isolated from chicken possess similar biological characteristics with those separated from other species, and their multi-lineage differentiation potentiality herald a probable application for cellular transplant therapy in tissue engineering.  相似文献   

9.
Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.  相似文献   

10.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

11.
Bovine liver-derived mesenchymal stem cells (bLMSCs) were isolated from the liver tissue of 4–6 months old fetal calf, and then characterized by immunofluorescence and RT-PCR. We found that primary bLMSCs could be subcultured to 44 passages, the total culture time in vitro was 192 days. The results of surface antigen detection showed that bBMSCs expressed CD29, CD44, CD73, CD90, CD106 and CD166 but not expressed endothelial cells and hematopoietic cells specific marker CD34, CD45 and BLA-DR. The results of growth kinetics, colony-forming cell assay and cell cycle analysis indicated that the fetal bovine LMSCs had good proliferation ability in vitro. The cells from passages 7 were successfully induced to differentiate into osteoblasts, adipocytes and chondrocytes. The results indicate the potential for multi-lineage differentiation of bLMSCs that may represent an ideal candidate for cellular transplantation therapy.  相似文献   

12.
目的 建立一种简单的人脐带间充质干细胞分离培养方法.方法 取新鲜脐带,剪成5 cm长的小段,直接剪碎为糊状,加入含10%胎牛血清的DMEM/F12在培养瓶中培养,光学显微镜下观察细胞的生长特征,运用流式细胞仪检测分析细胞的抗原标志表达,并检测其体外多向分化潜能.结果 运用不剥离血管组织、不用酶消化的组织贴块培养法可以从...  相似文献   

13.
Bone marrow contains mesenchymal cells that can be isolated and grown in vitro. Using appropriate treatment protocols such cultures can be induced to differentiate to yield osteoblasts, adipocytes, and chondrocytes. However, previous experiments had not addressed the question whether single pluripotent stem cells exist and can give rise to these different cell lineages or whether bone marrow mesenchymal cell preparations represent a mixture of committed precursors. We have used human adult bone marrow-derived mesenchymal cells obtained from iliac crest biopsies to demonstrate clonal outgrowth after limiting dilution and we show that some clones can be expanded over more than 20 cumulative population doublings and differentiated to osteoblasts, adipocytes, and chondrocytes. Our data provide direct experimental evidence that cultures of bone marrow-derived mesenchymal cells contain individual cells that fulfil two essential stem cell criteria: (i) extensive self-renewal capacity and (ii) multi-lineage potential.  相似文献   

14.
Much effort has been made in searching for multipotent cell types with high therapeutic potentials for repair of damaged tissue. Through enzymatic digestion of fat tissue, it is possible to obtain a large number of stromal cells. Isolated cells show a high proliferate capacity in culture. All this makes adipose stromal cells (ASC) promising candidates for their use in cell therapy. This review is focused on analyzing the surface antigen profile of isolated population of ASC, expression of angiogenic factors by these cells, as well as on their differentiation potential. A high percentage of ASC population initially express the progenitor cell marker CD34, but during culturing, cells exhibit a mesenchymal cell phenotype and express CD29, CD105, CD106, CD166. Culturing ASC in specific differentiation media induces expression of early markers of differentiated mesenchymal cells, such as adipocytes, chondrocytes and osteoblasts, as well as myoblasts, cardiomyocytes and neural cells. It has been also shown that ASC have a strong pro-angiogenic potential, they are able to secret growth factors, such as VEGF, HGF, bFGF and others, which stimulate survival and proliferation of endothelial cells. In addition, systemic or local delivery of ASC to mice with hindlimb ischemia stimulates recovery of injured tissue and blood flow. Potential clinical uses of ASCs are discussed in the review.  相似文献   

15.
Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability. Subsequent robust cell growth was indicated by the high percentage of quiescent (G0/G1) cells. The cells expressed the mesenchymal surface markers, CD29, CD49b and CD105, but not the hematopoietic markers, CD45 and CD133 and synthesized hematopoietic cytokines. Over 21 days of induction, the cells differentiated into osteocytes adipocytes and chondrocytes. The expression of lineage specific genes was gradually upregulated during osteogenesis, adipogenesis and chondrogenesis. We conclude that porcine umbilical cord blood contains a population of MPCs capable of self-renewal and of differentiating in vitro into three classical mesenchymal lineages.  相似文献   

16.
17.
Amnion, which is usually discarded as medical waste, is considered as abundant sources for mesenchymal stem cells. In human and veterinary medicine, the multipotency of mesenchymal stem cells derived from amnion (AMSCs) together with their plasticity, self-renewal, low immunogenicity and nontumorigenicity characteristics make AMSCs a promising candidate cell for cell-based therapies and tissue engineering. However, up till now, the multipotential characteristics and therapeutic potential of AMSCs on preclinical studies remain uncertain. In this work, we successfully obtained AMSCs from Beijing duck embryos in vitro, and also attempted to detect their biological characteristics. The isolated AMSCs were phenotypically identified, the growth kinetics and karyotype were tested. Also, the cells were positive for MSCs-related markers (CD29, CD71, CD105, CD166, Vimentin and Fibronection), while the expression of CD34 and CD45 were undetectable. Additionally, AMSCs also expressed the pluripotent marker gene OCT4. Particularly, when appropriately induced, AMSCs could be induced to trans-differentiate into adipocytes, osteoblasts, chondrocytes and neurocytes in vitro. Together, these results demonstrated that the isolated AMSCs maintained their stemness and proliferation in vitro, which may be useful for future cell therapy in regenerative medicine.  相似文献   

18.
《Cytotherapy》2014,16(1):3-16
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.  相似文献   

19.
Adipose tissue is a source of adult multipotent stem cells that can differentiate along mesenchymal lineage. When mature fat cells obtained from human subcutaneous adipose tissue were maintained with attachment to the ceiling surface of culture flasks filled with medium, two fibroblastic cell populations appeared at the ceiling and the bottom surface. Both populations were positive to CD13, CD90, and CD105, moderately positive to CD9, CD166, and CD54, negative to CD31. CD34, CD66b, CD106, and CD117, exhibited potential of unlimited proliferation, and differentiated along mesenchymal lineage to produce adipocytes, osteoblasts, and chondrocytes. The population that appeared at the ceiling surface showed higher potential of adipogenic differentiation. These observations showed that the cells tightly attached to mature fat cells can generate two fibroblastic cell populations with multiple but distinct potential of differentiation. Since enough number of both populations for clinical transplantation can be easily obtained by maintaining fat cells from a small amount of subcutaneous adipose tissue, this method has an advantage in preparing autologous cells for patients needing repair of damaged tissues by reconstructive therapy.  相似文献   

20.
Wang JP  Hui YJ  Wang ST  Yu HH  Huang YC  Chiang ER  Liu CL  Chen TH  Hung SC 《PloS one》2011,6(8):e24050
Musculoskeletal fibromatosis remains a disease of unknown etiology. Surgical excision is the standard of care, but the recurrence rate remains high. Superficial fibromatosis typically presents as subcutaneous nodules caused by rapid myofibroblast proliferation followed by slow involution to dense acellular fibrosis. In this study, we demonstrate that fibromatosis stem cells (FSCs) can be isolated from palmar nodules but not from cord or normal palm tissues. We found that FSCs express surface markers such as CD29, CD44, CD73, CD90, CD105, and CD166 but do not express CD34, CD45, or CD133. We also found that FSCs are capable of expanding up to 20 passages, that these cells include myofibroblasts, osteoblasts, adipocytes, chondrocytes, hepatocytes, and neural cells, and that these cells possess multipotentiality to develop into the three germ layer cells. When implanted beneath the dorsal skin of nude mice, FSCs recapitulated human fibromatosis nodules. Two weeks after implantation, the cells expressed immunodiagnostic markers for myofibroblasts such as α-smooth muscle actin and type III collagen. Two months after implantation, there were fewer myofibroblasts and type I collagen became evident. Treatment with the antifibrogenic compound Trichostatin A (TSA) inhibited the proliferation and differentiation of FSCs in vitro. Treatment with TSA before or after implantation blocked formation of fibromatosis nodules. These results suggest that FSCs are the cellular origin of fibromatosis and that these cells may provide a promising model for developing new therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号