首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.  相似文献   

2.
3.
Glucagon-like peptide-1 (GLP-1) and its analogues have a beneficial role in cardiovascular system. Here, we aimed to investigate whether liraglutide, a GLP-1 analogue, modulated angiogenesis impaired by palmitic acid (PA) in cultured human umbilical vein endothelial cells (HUVECs). Cells were incubated with liraglutide (3–100 nmol/L) in the presence of PA (0.5 mmol/L), and endothelial tube formation was observed and quantified. The protein levels of signaling molecules were analyzed and the specific inhibitors were used to identify the signaling pathways through which liraglutide affected angiogenesis. Results showed that liraglutide ameliorated endothelial tube formation impaired by PA in HUVECs in a dose-dependent manner. Meanwhile, liraglutide increased the phosphorylation of Akt and forkhead box O1 (Foxo1), and upregulated the levels of guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and endothelial nitric oxide synthase (eNOS) in PA-impaired HUVECs. Notably, addition of the PI3K inhibitor LY294002, Foxo1 nuclear export inhibitor trifluoperazine dihydrochloride (TFP), GTPCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP) or NOS inhibitor N-nitro-l-arginine-methyl ester (L-NAME) eliminated the angiogenic effect of liraglutide. Moreover, either LY294002 or TFP abolished the liraglutide-induced upregulation of GTPCH1 and eNOS protein levels. In conclusion, liraglutide restores angiogenesis in PA-impaired HUVECs. The effect is mediated via upregulation of GTPCH1 and eNOS levels in a PI3K/Akt-Foxo1-dependent mechanism.  相似文献   

4.
VEGF is a major inducer of angiogenesis. However, the homing role of VEGF for cardiac stem cells (CSCs) is unclear. In in vitro experiments, CSCs were isolated from the rat hearts, and a cellular migration assay was performed using a 24-well transwell system. VEGF induced CSC migration in a concentration-dependent manner, and SU5416 blocked this. Western blot analysis showed that the phosphorylated Akt was markedly increased in the VEGF-treated CSCs and that inhibition of pAkt activity significantly attenuated the VEGF-induced the migration of CSCs. In in vivo experiments, rat heart myocardial infarction (MI) was induced by left coronary artery ligation. One week after MI, the adenoviral vector expressing hVEGF165 and LacZ genes were injected separately into the infarcted myocardium at four sites before endomyocardial transplantation of 2 × 105 PKH26 labeled CSCs (50 μL) at atrioventricular groove. One week after CSC transplantation, RT-PCR, immunohistochemical staining, Western blot, and ELISA analysis were performed to detect the hVEGF mRNA and protein. The expression of hVEGF mRNA and protein was significantly increased in the infarcted and hVEGF165 transfected rat hearts, accompanied by an enhanced PI3K/Ak activity, a greater accumulation of CSCs in the infarcted region, and an improvement in cardiac function. The CSC accumulation was inhibited by either the VEGF receptor blocker SU5416 or the PI3K/Ak inhibitor wortmannin. VEGF signaling may mediate the migration of CSCs via activation of PI3K/Akt.  相似文献   

5.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

6.
Activated human hepatic stellate cells (HSCs) showed enhanced ability of migration compared with quiescent HSCs, which is pivotal in liver fibrogenesis. The aim of the present study was to investigate the effects of tumor necrosis factor‐like weak inducer of apoptosis (TWEAK) on the migration of activated HSCs and to explore the relevant potential mechanisms. Human HSCs LX‐2 cells were cultured with TWEAK. TNFRSF12A‐downexpressing lentiviruses were used to infect LX‐2 cells. The specific matrix metalloproteinases inhibitor BB94, the Src family kinase inhibitor, Dasatinib, and the specific inhibitor of phosphoinositide 3‐kinase (PI3K), LY294002 were used to treat LX‐2 cells combined with TWEAK. Cell migration and invasion was tested by the transwell assay. The expression of EGFR/Src, PI3K/AKT, and matrix metallopeptidase 9 (MMP9) was identified by real‐time polymerase chain reaction or western blotting. The result showed TWEAK promoted HSC migration and collagen production. BB94 significantly attenuated the migration of LX‐2 induced by TWEAK. Dasatinib inhibited the ability of cell migration stimulated by TWEAK. TWEAK upregulated the phosphorylation of epidermal growth factor receptor (EGFR) and Src. The phosphorylation of PI3K and AKT was significantly activated by TWEAK stimulation. Inhibition of PI3K/AKT reduced the expression of MMP9 induced by TWEAK. The present study, for the first time, demonstrated that TWEAK promoted HSC migration through the activation of EGFR/Src and PI3K/AKT pathways, and showed a novel potential mechanism of HSC migration regulated by TWEAK.  相似文献   

7.
8.
Thymoquinone (TQ), a bioactive component of black caraway seed (Nigella sativa) oil, is reported to have antineoplastic properties. In this study we investigated the effect of TQ on a panel of human breast cancer cell lines. Cell viability assays showed that TQ killed T-47D, MDA-MB-231, and MDA-MB-468 cells via p53-independent induction of apoptosis; however, MCF-7 cells were refractory to the cytotoxic action of TQ. Western Blot analysis showed that MCF-7 cells expressed high levels of cytoprotective NADPH quinone oxidoreductase 1 (NQO1), which was responsible for TQ-resistance since inhibition of NQO1 with dicoumarol rendered MCF-7 cells TQ-sensitive. These findings may be clinically important when considering TQ as a possible adjunct treatment for breast cancer since a high percentage of breast tumors express NQO1.  相似文献   

9.
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders’ treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3′-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.  相似文献   

10.
11.
Obesity-linked diseases are associated with suppressed endothelial progenitor cell (EPC) function. Adiponectin is an adipose-derived protein that is downregulated in obese and diabetic subjects. Here, we investigated the effects of adiponectin on EPCs. EPC levels did not increase in adiponectin deficient (APN-KO) in response to hindlimb ischemia. Adenovirus-mediated delivery of adiponectin increased EPC levels in both WT and APN-KO mice. Incubation of human peripheral blood mononuclear cells with adiponectin led to an increase of the number of EPCs. Adiponectin induced EPC differentiation into network structures and served as a chemoattractant in EPC migration assays. These data suggest that hypoadiponectinemia may contribute to the depression of EPC levels that are observed in patients with obesity-related cardiovascular disorders.  相似文献   

12.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   

13.
为探讨NEAT1在骨质疏松症中的作用以及可能的病理机制,本研究通过建立卵巢去势和鼠尾悬挂2种骨质疏松的小鼠模型,将C57BL/6分为假手术组(Sham组)、OVX组和TS组;经过PCR测定小鼠NEAT1的表达;Elisa法检测小鼠E2、ALP和TRACP水平;Western blotting检测细胞凋亡因子PI3K/AKT/Bcl-2的蛋白水平。结果显示,建模4周后,3组小鼠体重没有显著变化;与Sham组相比,OVX组和TS组小鼠的骨密度值显著降低,骨生化指标ALP和TRACR水平明显升高;OVX组小鼠的E2水平与Sham组相比明显降低;与Sham组相比,OVX组和TS组小鼠的NEAT1表达显著下调;与Sham组相比,OVX组和TS组小鼠p-AKT和Bcl-2蛋白水平明显降低。本研究结果表明,NEAT1可能通过抑制PI3K/AKT/Bcl-2细胞凋亡途径诱导骨质疏松。  相似文献   

14.
Oxoglutarate receptor 1 (OXGR1), as one of the intermediates in G protein-coupled receptors (GPCRs), plays a crucial role in the citric acid cycle receptor of α-ketoglutarate and metabolism. GPCR can control the cell proliferation by regulating the downstream signaling of G protein signaling pathways. The PI3K/AKT pathway transmits the downstream signals of GPCRs and receptor tyrosine kinases. However, the specific role of OXGR1 promoting cell proliferation and differentiation are still unknown. In current study, the over-expression vector and knockdown sequence of yak OXGR1 were transfected into yak fibroblasts, and the effects were detected by a series of assays. The results revealed that OXGR1 expression in yak lung parenchyma tissue was significantly higher than that of other tissues. In yak fibroblasts, the upregulated expression of OXGR1 resulted in activating the PIK3CG (downstream signal) of the PI3K/AKT1 pathway that can upregulated the expression of proliferation genes ( CDK1, PCNA, and CyclinD1) and promote cell proliferation. Conversely, the downregulated expression of OXGR1 inhibited cell proliferation via PI3K/AKT1 pathway. Cell cycle and cell proliferation assays demonstrated that over-expression of OXGR1 can enhanced the DNA synthesis and promoted yak fibroblasts proliferation. While the conversely, knockdown of OXGR1 can decreased DNA synthesis and inhibited cell proliferation. These results illustrated that changes of OXGR1 expression can trigger the fibroblasts proliferation via PI3K/AKT signaling pathway, which indicating that OXGR1 is a novel regulator for cell proliferation and differentiation. Furthermore, these results provide evidence supporting the functional role of GPCRs-PI3K-AKT1 and OXGR1 in cell proliferation.  相似文献   

15.
H Wang  Q Wu  Z Liu  X Luo  Y Fan  Y Liu  Y Zhang  S Hua  Q Fu  M Zhao  Y Chen  W Fang  X Lv 《Cell death & disease》2014,5(4):e1155
It is largely recognized that fibroblast activation protein (FAP) is expressed in cancer-associated fibroblasts (CAFs) of many human carcinomas. Furthermore, FAP was recently also reported to be expressed in carcinoma cells of the breast, stomach, pancreatic ductal adenocarcinoma, colorectum, and uterine cervix. The carcinoma cell expression pattern of FAP has been described in several types of cancers, but the role of FAP in oral squamous cell carcinoma (OSCC) is unknown. The role of endogenous FAP in epithelium-derived tumors and molecular mechanisms has also not been reported. In this study, FAP was found to be expressed in carcinoma cells of OSCC and was upregulated in OSCC tissue samples compared with benign tissue samples using immunohistochemistry. In addition, its expression level was closely correlated with overall survival of patients with OSCC. Silencing FAP inhibited the growth and metastasis of OSCC cells in vitro and in vivo. Mechanistically, knockdown of FAP inactivated PTEN/PI3K/AKT and Ras-ERK and its downstream signaling regulating proliferation, migration, and invasion in OSCC cells, as the inhibitory effects of FAP on the proliferation and metastasis could be rescued by PTEN silencing. Our study suggests that FAP acts as an oncogene and may be a potential therapeutic target for patients with OSCC.  相似文献   

16.
The anti-apoptotic effect of PGE(2) was examined in Jurkat cells (human T-cell leukemia) by incubation with PGE(2) (5 nM) prior to treatment with the cancer chemotherapeutic agent camptothecin. Apoptosis was evaluated by caspase-3 activity in cell extracts and flow cytometry of propidium iodide-labeled cells. Pre-incubation with PGE(2) reduced camptothecin-induced caspase activity by 30% and apoptosis by 35%, respectively. Pharmacological data demonstrate that the EP4 receptor is responsible for mediating the protection from camptothecin-induced apoptosis. Pre-treatment of the cells with the EP4 antagonist (EP4A) prior to PGE(2) and camptothecin abolished the increased survival effect of PGE(2). Specific inhibition of the downstream of PI3 kinase or AKT/protein kinase but not protein kinase A prevents the observed increase in cell survival elicited by PGE(2). These findings have critical implications regarding the mechanism and potential application of PGE(2) receptor specific inhibition in cancer therapy.  相似文献   

17.
Novel drugs are required for non-small cell lung cancer (NSCLC) treatment urgently. Repurposing old drugs as new treatments is a practicable approach with time and cost savings. Some studies have shown that carrimycin, a Chinese Food and Drug Administration (CFDA)-approved macrolide antibiotic, possesses potent anti-tumor effects against oral squamous cell carcinoma. However, its detailed component and underlying mechanisms in anti-NSCLC remain unknown. In our study, isovalerylspiramycin I (ISP-I) was isolated from carrimycin and demonstrated a remarkable anti-NSCLC efficacy in vitro and in vivo with a favorable safety profile. It has been proven that in NSCLC cell lines H460 and A549, ISP-I could induce G2/M arrest and apoptosis, which was mainly attributed to ROS accumulation and subsequently PI3K/AKT signaling pathway inhibition. Numerous downstream genes including mTOR and FOXOs were also changed correspondingly. An observation of NAC-induced reverse effect on ISP-I-leading cell death and PI3K/AKT pathway inhibition, emphasized the necessity of ROS signaling in this event. Moreover, we identified ROS accumulation and PI3K/AKT pathway inhibition in tumor xenograft models in vivo as well. Taken together, our study firstly reveals that ISP-I is a novel ROS inducer and may act as a promising candidate with multi-target and low biological toxicity for anti-NSCLC treatment.  相似文献   

18.
CENPU (centromere protein U), a centromere component essential for mitosis, relates with some cancers progression. However, it is not well illustrated in lung adenocarcinoma (LAC). Here, we aimed to investigate the potential effect of CENPU on LAC progression and prognosis. In this experiment, expression level of CENPU and association between its expression and LAC patients’ clinicopathological characteristics and prognosis were analyzed. The proliferation, migration and invasive abilities of LAC cells were determined by CCK-8, colony formation, transwell assays. Western blot was used to detect PI3K/AKT signaling key proteins. We found CENPU level was overexpressed in LAC tissues on comparing normal tissues. Moreover, CENPU overexpression correlated with clinicopathological variables and predicted an independent prognostic indicator in LAC patients. Functionally, CENPU downregulation significantly inhibited LAC cell proliferation, migration and invasion in, which was possibly mediated by PI3K/AKT pathway inactivation. Our findings insinuate targeting CENPU may be a potential therapeutic strategy for LAC.  相似文献   

19.
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.  相似文献   

20.
The phosphatidylinositol 3 kinase(PI3K)/AKT pathway is genetically targeted in more pathway components and in more tumor types than any other growth factor signaling pathway,and thus is frequently activated as a cancer driver.More importantly,the PI3K/AKT pathway is composed of multiple bifurcating and converging kinase cascades,providing many potential targets for cancer therapy.Renal cell carcinoma(RCC) is a high-risk and high-mortality cancer that is notoriously resistant to traditional chemotherapies or radiotherapies.The PI3K/AKT pathway is modestly mutated but highly activated in RCC,representing a promising drug target.Indeed,PI3 K pathway inhibitors of the rapalog family are approved for use in RCC.Recent large-scale integrated analyses of a large number of patients have provided a molecular basis for RCC,reiterating the critical role of the PI3K/AKT pathway in this cancer.In this review,we summarize the genetic alterations of the PI3K/AKT pathway in RCC as indicated in the latest large-scale genome sequencing data,as well as treatments for RCC that target the aberrant activated PI3K/AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号