首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钙结合蛋白S100A14是S100家族中的新成员,其空间结构与功能尚未阐明。采用服务器PredictProtein对人S100A14进行二级结构预测,利用同源建模法构建S100A14(序列12-102)的空间结构模型,经PROCHECK评估模型的可靠性,并将所构建的单体模型进行分子对接,预测S100A14形成同源二聚体的可能性及模式。结果显示,S100A14与S100A13的蛋白序列一致性最高,其C-端Ca2+结合区存在多个变异,但Cu2+和Zn2+结合位点保守存在;helix I与helix IV较S100A13延伸长,而helix I、helix II和helix IV与S100A13的四个α螺旋一样具有两亲性的结构特征,并且在S100A13中扮演重要角色的W77在S100A14的helix IV(W85)中也保守存在。空间结构上,S100A14与S100A13具极大相似性;分子对接显示S100A14单体间可以通过疏水作用力形成"X-型螺旋束"同源二聚体。这些结构特征的分析将为S100A14的功能研究提供重要线索。  相似文献   

2.
The mechanisms of nonclassical export of signal peptide-less proteins remain insufficiently understood. Here, we demonstrate that stress-induced unconventional export of FGF1, a potent and ubiquitously expressed mitogenic and proangiogenic protein, is associated with and dependent on the formation of membrane blebs and localized cell surface exposure of phosphatidylserine (PS). In addition, we found that the differentiation of promonocytic cells results in massive FGF1 release, which also correlates with membrane blebbing and exposure of PS. These findings indicate that the externalization of acidic phospholipids could be used as a pharmacological target to regulate the availability of FGF1 in the organism.  相似文献   

3.
The S100 protein family is the largest group of calcium-binding protein families, which consists of at least 25 members. S100A13, which is widely expressed in a variety of tissues, is a unique member of the S100 protein family. Previous reports showed that S100A13 might be involved in the stress-induced release of some signal peptide-less proteins (such as FGF-1 and IL-1alpha) and also associated with inflammatory functions. It was also reported that S100A13 is a new angiogenesis marker. Here we report the crystal structure of the Ca(2+)-bound form of S100A13 at 2.0 A resolution. S100A13 is a homodimer with four EF-hand motifs in an asymmetric unit, displaying a folding pattern similar to other S100 members. However, S100A13 has the unique structural feature with all alpha-helices being amphiphilic, which was not found in other members of S100s. We propose that this characteristic structure of S100A13 might be related to its ability to mediate the release of FGF-1 and IL-1alpha.  相似文献   

4.
S100A13 is S100 family of EF-hand-containing calcium-binding protein involved in the secretion of some growth factors and pro-inflammatory cytokines lacking signal peptides. The involvement of S100A13 in cancer progression and inflammatory diseases has been reported. In this study, structures generated during atomistic molecular dynamics simulation were studied. Dynamical network analysis data revealed that native inter-protomer communication network driven principally by vdW interaction (~550 kj/mol) is altered (Receptor for advanced glycation end products (RAGE) C2- and Fibroblast growth factor (FGF)-1-bound S100A13) or completely abolished (interleukin-1 (IL1)-α- and C2A-p40Syt1-bound S100A13) in protein-bound S100A13 homodimer. Bulk water density (weighted atomic density) around exposed S100A13 homodimer surface explored tends to follow the dynamical network lead as S100A13 homodimer appeared densely solvated in C2A-p40Syt1- and IL1)-α-bound states but not in RAGE C2- and FGF-1-bound biosystems. Furthermore, projection of radius of gyration and root mean square deviation (from native structure) variables of the generated structures along the 3D-free energy surface showed anti-parallel β-sheet proximal to Ca2+-binding loops-I/II in most metastable complexes retrieved from energy minima state with strong indications for β-sheet network formation during protein binding. Interaction between S100A13 homodimer and ligand–proteins may be dictated by the strength of vdW and electrostatic interaction with possible involvement of bulk water desolvation in some complexes. All these results strongly suggest that disruption of multiprotein receptor complex can be achieved by designing specific compounds targeting a specific aspect of S100A13/protein interaction; such drugs may have clinical usefulness in blocking angiogenesis, reversing cell proliferation and attenuating inflammatory processes.  相似文献   

5.
S100A1 is a new regulatory protein of myocardial contractility that is differentially expressed in early and late stages of myocardial hypertrophy. In order to further investigate the multiple functions of S100A1 in various assay systems we developed a new strategy for isolating biologically active S100A1 protein. After EDTA extraction of myocardium or recombinant bacteria, S100A1 was purified by Octyl-Sepharose hydrophobic interaction chromatography and HiTrapQ anion-exchange chromatography yielding 1.4–2.0 mg/100 g wet tissue and 0.7–1.0 mg/100 ml bacterial culture. Native porcine as well as human recombinant S100A1 revealed biological activity in physiological and biochemical assays.  相似文献   

6.
S100 proteins, a multigenic family of calcium-binding proteins, have been linked to human pathologies in recent years. Deregulated expression of S100 proteins, including S100A8 and S100A9, was reported in association with neoplastic disorders. In a previous study, we identified enhanced expression of S100A8 and S100A9 in human prostate cancer. To investigate potential functional implications of S100A8 and S100A9 in prostate cancer, we examined the influence of over-expressed and of purified recombinant S100A8 and S100A9 proteins in different prostate epithelial cell lines. S100A8 and S100A9 were secreted by prostate cancer cells, a finding which prompted us to analyze a possible function as extracellular ligands. S100A8/A9 induced the activation of NF-kappaB and an increased phosphorylation of p38 and p44/42 MAP kinases. In addition, extracellular S100A8/A9 stimulated migration of benign prostatic cells in vitro. Furthermore, in immunofluorescence experiments, we found a strong speckled co-localization of intracellular S100A8/A9 with RAGE after stimulating cells with recombinant S100A8/A9 protein or by increasing cytosolic Ca2+ levels. In summary, our findings show that S100A8 and S100A9 are linked to the activation of important features of prostate cancer cells.  相似文献   

7.
胰腺癌最重要的生物学特性是容易发生转移和侵袭,致使很多患者无法得到根治性治疗。外科手术是胰腺癌惟一可能治愈的手段,但仅有10-20%的患者有机会手术治疗。错过早期诊断、常规疗法普遍不明显及快速肿瘤扩散共同导致患者的预后不良。胰腺癌的发生、发展受多基因调控。S100A4基因是近几年发现的一种具有促肿瘤作用的基因,目前研究认为该蛋白在胰腺癌的侵袭和转移中起重要作用.本文主要就S100A4与胰腺癌的有关研究进展加以综述。  相似文献   

8.
胰腺癌最重要的生物学特性是容易发生转移和侵袭,致使很多患者无法得到根治性治疗。外科手术是胰腺癌惟一可能治愈的手段,但仅有10-20%的患者有机会手术治疗。错过早期诊断、常规疗法普遍不明显及快速肿瘤扩散共同导致患者的预后不良。胰腺癌的发生、发展受多基因调控。S100A4基因是近几年发现的一种具有促肿瘤作用的基因,目前研究认为该蛋白在胰腺癌的侵袭和转移中起重要作用.本文主要就S100A4与胰腺癌的有关研究进展加以综述。  相似文献   

9.
S100A4是S100蛋白家族的成员,在细胞的增殖、分化、损伤修复以及肿瘤细胞转移等方面发挥重要的调控作用.本研究将S100A4全长基因构建到pET28a原核表达载体上,利用大肠杆菌表达系统表达和纯化出高纯度的重组人S100A4.通过试验证明,重组人S100A4蛋白在体外可以有效地增强黑色素瘤细胞A375-S2的增殖.重组人S100A4原核表达与纯化方法的建立将促进其结构和生物学功能研究,并且对于S100蛋白家族其它蛋白的表达与纯化具有重要的参考意义.  相似文献   

10.
11.
S100A1 is a member of the Ca2+-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca2+ homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys85 S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca2+-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys85 thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca2+ signal transmitter sensitive to NO/redox equilibrium within cells.  相似文献   

12.
The S100 genes encode a conserved group of 21 vertebrate‐specific EF‐hand calcium‐binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium‐ and zinc‐binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+. The Ca2+ and Zn2+‐dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate‐specific proteins and propose a new model for stable interactions of S100B dimers with full‐length target proteins. A chaperone‐associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.  相似文献   

13.
14.
S100A4蛋白与肿瘤血管生成的研究进展   总被引:1,自引:0,他引:1  
肿瘤血管生成是指肿瘤细胞诱导的微血管生长以及肿瘤中血液循环建立的过程。重要脏器的转移是恶性肿瘤致死的主要原因,而肿瘤生长、转移和复发都依赖于肿瘤血管生成.S100A4基因是近几年发现的一种具有促肿瘤作用的基因,该基因编码一种钙离子结合调节蛋白,通过与钙离子结合在肿瘤发生和发展中起重要作用。目前研究认为该蛋白在肿瘤的侵袭和转移中有促血管生成作用.本文主要就S100A4与肿瘤血管生成的有关研究进展加以综述。  相似文献   

15.
Nacken W  Kerkhoff C 《FEBS letters》2007,581(26):5127-5130
S100A8, S100A9 and S100A12 proteins are associated with inflammation and tissue remodelling, both processes known to be associated with high protease activity. Here, we report that homo-oligomeric forms of S100A8 and S100A9 are readily degraded by proteases, but that the preferred hetero-oligomeric S100A8/A9 complex displays a high resistance even against proteinase K degradation. S100A12 is not as protease resistant as the S100A8/A9 complex. Since specific functions have been assigned to the homo- and heterooligomeric forms of the S100A8 and A9 proteins, this finding may point to a post-translational level of regulation of the various functions of these proteins in inflammation and tissue remodelling.  相似文献   

16.
S100家族是由20余个结构相似但功能各异的成员组成。该家族成员广泛参与感染、促炎、自身免疫等各种病理过程。近年来,越来越多学者发现S100家族成员在肿瘤的发展过程中也有不同程度的表达失调,且具有特异性。胃癌是我国常见的恶性肿瘤之一,国家癌症中心统计数据表明,2015年我国胃癌新发病率为679/10万,死亡率为498/10万[1],位居所有恶性肿瘤第2位。幽门螺杆菌(H. pylori)作为胃癌的Ⅰ类危险因子,目前其与胃癌的密切关系也得到了广大学者的认可。研究发现,S100家族成员——S100A8、S100A9在H. pylori感染相关胃炎、胃癌患者病理组织中表达显著上调,因此其在胃癌发生发展中的作用受到了学者的关注。本文主要就S100A8、S100A9在H. pylori相关胃癌发生发展中的作用作一综述。  相似文献   

17.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

18.
S100A4, a member of the S100 family of proteins, plays an important role in matrix remodeling by up-regulating the expression of matrix metalloproteinases (MMPs). We have previously shown that S100A4 is overexpressed in diseased cartilage and that extracellular S100A4 stimulates MMP-13 production, a major type II collagen-degrading enzyme, via activation of receptor for advanced glycation end product signaling. In the present study, using human articular chondrocytes, we show that intracellular S100A4 translocated into the nucleus upon interleukin-1β (IL-1β) stimulation and translocation required post-translational modification of S100A4 by the sumo-1 protein. Two sumoylation sites were identified on the S100A4 molecule, Lys22 and Lys96. Mutation of these lysine residues abolished the ability of S100A4 to be sumoylated and to translocate into the nucleus. Blocking of sumoylation and nuclear transport of S100A4 inhibited the IL-1β-induced production of MMP-13. Nuclear S100A4 was bound to the promoter region of MMP-13 in IL-1β-treated cells. Thus, we demonstrate a novel mechanism for sumoylated S100A4 as a regulator of expression of the MMP-13 gene.  相似文献   

19.
S100A8 and S100A9 and their heterocomplex calprotectin (S100A8/A9) are abundant cytosolic constituents in human neutrophils previously shown to possess antifungal activity. This study was designed to investigate mechanisms involved in the modulation of the antifungal properties of S100A8/A9. S100A8, S100A9 and site-directed mutants of both proteins were tested for their antifungal effect against Candida albicans in microplate dilution assays. Whereas S100A8 alone did not inhibit fungal growth, S100A9 by itself had a moderate antifungal effect. Combining both proteins had the strongest effect. Supporting a potential role for oxidation in S100A8/A9, substitution of methionine 63 or 83 of S100A9 resulted in the loss of antifungal activity. Additionally, the substitution to alanine of cysteine 42 of S100A8 also caused a loss of S100A8's ability to enhance S100A9's antifungal effect. Overall, our data indicate that both S100A8 and S100A9 are required for their fully active antifungal effect and that oxidation regulates S100A8/A9 antifungal activity through mechanisms that remain to be elucidated and evaluated. Finally, together with our previous work describing the oxidation-sensitive anti-inflammatory effects of S100A8/A9, we propose that S100A8/A9 exerts an anti-inflammatory activity in healthy state and that conditions associated with oxidative stress activate the antifungal activity of S100A8/A9.  相似文献   

20.
S100A1 and S100B are members of a family of 20 kDa Ca2++-binding homodimers that play a role in signal transduction in mammalian cells. S100A1 is the major isoform in normal heart and S100B, normally a brain protein, is induced in hypertrophic myocardium and functions as an intrinsic negative modulator of the hypertrophic response. In order to examine the function of S100A1, we first showed that, in contrast to S100B, S100A1 was downregulated in rat experimental models of myocardial hypertrophy following myocardial infarction or pressure overload. Second, in co-transfection experiments in cultured neonatal rat cardiac myocytes, S100A1 inhibited the 1-adrenergic activation of promoters of genes induced during the hypertrophic response including the fetal genes skeletal actin (skACT), and -myosin heavy chain (MHC) and S100B, but not the triiodothyronine (T3) activation of the promoter of the -MHC gene, that is normally expressed in adult myocardium. These results suggest that S100A1 is involved in the maintenance of the genetic program that defines normal myocardial function and that its downregulation is permissive for the induction of genes that underlie myocardial hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号