首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural difference of flavonoids strongly affects the binding process with plasma proteins. This work in here mainly concerns about the molecular property-binding affinity relationship of dietary flavonoids for common rat plasma proteins (CRPP). The magnitudes of binding constants between flavonoids and CRPP were within the range of 104-105 L/mol and the number of binding sites (n) was determined as 1.02 ± 0.19. These data were much smaller than the affinities between flavonoids and purified bovine and human serum albumins. The hydroxylation on rings A, B and C of flavonoids significantly affected the binding affinity. The glycosylation of dietary flavonoids decreased the binding affinity and the C2C3 double bond hardly affected it. The galloylated catechins have higher binding affinities for CRPP than non-galloylated catechins. Flavonoids played as a hydrogen bond acceptor when bound to CRPP. The flavonoids with high topological polar surface areas (TPSA) are bound tightly while those with low TPSA are not.  相似文献   

2.
Microtubules are complex structures arising in part from the polymerization of tubulin dimers. Tubulin binds to a wide range of drugs which have been used as probes for tubulin conformation and assembly properties. There is some evidence that taxol and taxotere have differing effects on tubulin conformation. Previous work has shown that MAP2 and Tau, although they both induce microtubule assembly, have qualitatively different effects on tubulin's behavior. Since most microtubulesin vivo are likely to be associated with MAPs, we decided to characterize the differential effects of MAP2, Tau, taxol, and taxotere on tubulin polymerization with the aim of understanding the mechanisms through which these agents stimulate microtubule assembly. Furthermore, the inhibitive effect of calcium has been used to elucidate the ability of the two drugs to force tubulin assembly. These observations suggest that docetaxel, in addition to its greater efficiency in tubulin assembly, may have the capacity to differently alter certain classes of microtubules. Tau and MAP2 accessory proteins may represent important cofactors modulating the effects of taxoids.  相似文献   

3.
Electric birefringence has been used to examine the states of association of tubulin in phosphocellulose-purified tubulin or depolymerized microtubule protein solutions at low temperature. In a high electric field (1000-4000 V/cm), tubulin could be orientated (owing to the existence of a permanent and/or induced dipole) and exhibited a positive birefringence (delta n), related to its intrinsic optical anisotropy. The analysis of the relaxation process (depending on hydrodynamic properties of molecules), by measurement of the time decay of delta n, revealed the existence of a multicomponent or polydisperse system, whatever the tubulin solution. Two relaxation times, representative of the smallest and the largest orientated species, were obtained by computer-fitting analysis. The mean values of relaxation time for phosphocellulose-purified tubulin were 0.8 and 8 microseconds. In microtubule protein solutions, large-sized macromolecular species with relaxation time up to 450 microseconds were detected. The largest species (relaxation times ranging from 50 to 450 microseconds) could be eliminated by centrifugation at 3000000 X g for 1 h. Addition of microtubule-associated protein to either pure tubulin or high-speed centrifuged microtubule protein led to a rapid formation of large species analogous to those present in microtubule protein. Molecular dimensions of the relaxing structures were estimated using simple hydrodynamic models and values of rotational diffusion constants calculated from the relaxation times, and compared to those of the structures described in the literature. In conclusion, we have found that (a) phosphocellulose-purified tubulin is not only composed of elementary species (dimers) but also contains tubulin-associated forms of limited size (up to 7-10 dimers), (b) depolymerized microtubule protein solutions contain ring oligomers and structures very much larger, the formation of which is dependent on the presence of microtubule-associated protein.  相似文献   

4.
Cibacron blue was found to inhibit assembly and increase the critical concentration of microtubule proteins. In the presence of 4 mol Cibacron blue/mol tubulin, assembly was completely inhibited and pre-formed microtubules disassembled. Addition of 8% (v/v) dimethylsulfoxide to Cibacron blue-inhibited samples induced assembly of normal microtubules in addition to sheets of protofilaments. Disassembly was induced upon addition of 1 mM colchicine or 2mM Ca2+. No obvious difference was seen in the protein composition of these microtubules compared with controls. GTP exchange was not affected by the presence of Cibacron blue nor was GTP able to counteract its effect. This indicates that the exchangeable GTP site is not involved. The extent of assembly of phosphocellulose purified tubulin in the presence of 8% (v/v) dimethylsulfoxide was only slightly less in the presence of Cibacron blue, although the assembly rate was decreased. These results suggest that Cibacron blue might alter the binding of one or more of the associated proteins stimulating assembly.  相似文献   

5.
Virus-specific T-cell (VST) infusion becomes a promising alternative treatment for refractory viral infections after hematopoietic stem cell transplantation (HSCT). However, VSTs are often infused during an immunosuppressive treatment course, especially corticosteroids, which are a first-line curative treatment of graft-versus-host disease (GVHD). We were interested in whether corticosteroids could affect adenovirus (ADV)-VST functions. After interferon (IFN)-γ based immunomagnetic selection, ADV-VSTs were in vitro expanded according to three different culture conditions: without methylprednisolone (MP; n?=?7), with a final concentration of MP 1?µg/mL (n?=?7) or MP 2?µg/mL (n?=?7) during 28?±?11 days. Efficacy and alloreactivity of expanded ADV-VSTs was controlled in vitro. MP transitorily inhibited ADV-VST early expansion. No impairment of specific IFN-γ secretion capacity and cytotoxicity of ADV-VSTs was observed in the presence of MP. However, specific proliferation and alloreactivity of ADV-VSTs were decreased in the presence of MP. Altogether, these results and the preliminary encouraging clinical experiences of co-administration of MP 1?mg/kg and ADV-VSTs will contribute to safe and efficient use of anti-viral immunotherapy.  相似文献   

6.
We present a model of excitable media with the feature that it has a vulnerable phase during which a premature current stimulus will result in the formation of a reentrant selfsustained wave of excitation. The model exploits anisotropic coupling of identical cells, and is therefore useful as a model for the myocardium. We give rigorous verification that there is a vulnerable phase, and demonstrate numerically that permanently rotating waves are formed. Finally, it is shown that the direction of fastest propagation in myocardium is not necessarily the direction of highest safety factor, contrary to commonly accepted opinion.  相似文献   

7.
Summary Microtubule-associated proteins (MAPS) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution.The addition of estramustine phosphate to microtubules reconstituted of MAPS prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4° C was dependent on intact bindings between the tubulin and MAPs.Abbreviations Pipes 1,4-Piperazinediethanesulfonic acid - EDTA Ethylenedinitrilo Tetraacetic Acid - MAPs Microtubule-Associated Proteins - SDS-PAGE SDS-Polyacrylamide Gel Electrophoresis  相似文献   

8.
The study was undertaken on the basis of several reports in the literature that relaxation of vascular smooth muscles is a good treatment strategy in hypertension, angina and other cardiovascular disorders. Oxadiazoles have been reported to have effect on vascular smooth muscles and calcium influx. The goals of our current in vitro study were to investigate the effect of a 1,3,4-oxadiazole derivative on vascular smooth muscles in rat aorta, and to elucidate the associated signaling pathway. NOX-1 induced a relaxation of vascular smooth muscles in both endothelium intact and denuded rat aortic rings precontracted with norepinephrine or phenylephrine or KCl. NOX-1 also significantly antagonized cumulative dose-response effect of norepinephrine, phenylephrine, KCl or calcium with reduction in submaximal contractions. Verapamil, an L-type of calcium channel blocker, effectively attenuated phenylephrine and calcium induced contractions in aortic rings. Incubation with NOX-1 and verapamil did not significantly alter the dose-response curve of phenylephrine or calcium compared to verapamil treatment alone indicating L-type Ca2+ channel blockage leads to loss of NOX-1 activity. Hence it can be concluded NOX-1 exhibited vasorelaxant action by inhibiting calcium influx from extracellular space to intracellular space through L-type of calcium channels.  相似文献   

9.

Background

Tryptophan-histidine (Trp-His) was found to suppress the activity of the Ca2 +/calmodulin (CaM)-dependent protein kinases II (CaMKII), which requires the Ca2 +-CaM complex for an initial activation. In this study, we attempted to clarify whether Trp-His inhibits Ca2 +-CaM complex formation, a CaMKII activator.

Methods

The ability of Trp-His and other peptides to inhibit Ca2 +-CaM complex formation was investigated by a Ca2 +-encapsulation fluorescence assay. The peptide-CaM interactions were illustrated by molecular dynamic simulation.

Results

We showed that Trp-His inhibited Ca2 +-CaM complex formation with a 1:1 binding stoichiometry of the peptide to CaM, considering that Trp-His reduced Hill coefficient of Ca2 +-CaM binding from 2.81 to 1.92. His-Trp also showed inhibitory activity, whereas Trp + His, 3-methyl His-Trp, and Phe-His did not show significant inhibitory activity, suggesting that the inhibitory activity was due to a peptide skeleton (irrespective of the sequence), a basic amino acid, a His residue, the N hydrogen atom of its imidazole ring, and Trp residue. In silico studies suggested the possibility that Trp-His and His-Trp interacted with the Ca2 +-binding site of CaM by forming hydrogen bonds with key Ca2 +-binding residues of CaM, with a binding free energy of − 49.1 and − 68.0 kJ/mol, respectively.

Conclusions

This is the first study demonstrating that the vasoactive dipeptide Trp-His possesses inhibitory activity against Ca2 +-CaM complex formation, which may elucidate how Trp-His inhibited CaMKII in a previous study.

General significance

The results provide a basic idea that could lead to the development of small peptides binding with high affinity to CaM and inhibiting Ca2 +-CaM complex formation in the future.  相似文献   

10.
Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca2+]i) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca2+]i oscillations followed by larger and sustained [Ca2+]i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca2+]i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca2+]i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca2+]i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia.  相似文献   

11.
When cultured in vitro in the presence of serum from a number of sheep infected with Echinococcus granulosus cysts, varying proportions of oncospheres died within 24 h. Of the survivors, some died during reorganization into cysts; others were able to develop normally but showed evidence of precipitates in the outer layers of the cyst. The lethal effects were removed by heating the serum to 56°C for 30 min and could be restored by the addition of freshly-collected normal sheep serum. In the presence of serum from sheep immunized against E. granulosus, most oncospheres were dead within 24 h, and few or none of the survivors were able to reorganize into cysts.  相似文献   

12.
Recombinant therapeutic proteins are heterogeneous due to chemical and physical modifications. Understanding the impact of these modifications on drug safety and efficacy is critical for optimal process development and for setting reasonable specification limits. In this study, we describe the development of an in vitro continuous flow dialysis system to evaluate potential in vivo behavior of thiol adducted species and incorrectly disulfide bonded species of therapeutic proteins. The system is capable of maintaining the low-level cysteine concentrations found in human blood. Liabilities of cysteamine adducted species, incorrectly disulfide bonded species, and the correctly disulfide bonded form of an Fc-fusion protein were studied using this system. Results showed that 90% of the cysteamine adduct converted into the correctly disulfide bonded form and incorrectly disulfide bonded species in approximately 4 h under physiological conditions. Approximately 50% of incorrectly disulfide bonded species converted into the correctly bonded form in 2 days. These results provide valuable information on potential in vivo stability of the cysteamine adduct, incorrectly disulfide bonded species, and the correctly bonded form of the Fc-fusion protein. These are important considerations when evaluating the criticality of product quality attributes.  相似文献   

13.
The calcium content of bovine adrenal medulla perfused in vitro has been shown to increase about 30% in response to extensive acetylcholine stimulation. The calcium accumulated during secretion was mainly associated with the mitochondria and chromaffin granule fractions and to a lesser extent in the microsome fraction. While the calcium taken up by the mitochondria and microsomes was partly or totally removed by treatment with EDTA, the chelating agent had no effect on the granule content of calcium. The uptake of calcium in the mitochondria and microsomes during secretion is consistent with a function of these organelles in regulating the cellular calcium concentration. It is suggested that also the chromaffin granules may act as a “Ca-pump” in the chromaffin cell of the adrenal medulla.  相似文献   

14.
15.
In this work we characterized the infection of a primary culture of rat osteoblastic lineage cells (OBCs) with measles virus (MeV) and the effect of infection on cell differentiation and maturation. Infection of OBCs with MeV led to high titers of infectivity released early after infection. Also, analysis of mRNAs corresponding to osteogenic differentiation markers like alkaline phosphatase (ALP), bone sialo-protein (BSP) and bone morphogenetic proteins (BMPs) 1-4-5-7 in OBCs revealed higher values (2–75-fold of increment) for infected cells in comparison with uninfected controls. Differentiation of OBCs in osteogenic medium prior to infection influenced the level of stimulation induced by MeV. Furthermore, treatment of OBCs with Ly294002, a PI3K/AKT inhibitor, increased viral titers, whereas treatment with 10 μM or 100 μM ATPγS diminished MeV multiplication. In addition, increments of osteogenic differentiation markers induced by MeV infection were not modified either by treatment with Ly294002 or ATPγS. These data provide the first evidence demonstrating that MeV can infect osteoblasts in vitro leading to osteoblastic differentiation, a key feature in bone pathogenic processes like otosclerosis.  相似文献   

16.
17.
Nestin is an intermediate filament protein expressed in neural and mesenchymal stem cells. Here, we investigated the expression of nestin in vascular smooth muscle cells (VSMCs) in vivo and in vitro. In the developing arteries, medial VSMCs were found to express nestin; its expression was prominent in embryos but was down-regulated after birth (3-6 weeks) in a region-dependent manner; its expression was abolished in the adult. Thus, the expression of nestin is specific to developing VSMCs. In primary VMSC cultures, nestin expression was induced by serum, but was independent of cell-cycle progression. Signaling analyses revealed that the serum-induced nestin expression depended on the extracellular signal-regulated kinase (ERK) and protein kinase B (PKB)(Akt) pathways, via the platelet derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Nestin expression was closely related to the up-regulation and activation of Sp1 and Sp3. Among major serum growth factors and cytokines, PDGF-BB was the most potent inducer of nestin expression. Nestin was also up-regulated in arteries undergoing vascular remodeling following balloon injury. Its expression was particularly strong in the cells lining the lumen of the neointima, suggesting a possible correlation between nestin expression and the progression of vascular remodeling.  相似文献   

18.
Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD–RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD–RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.  相似文献   

19.
Adult Schistosoma mansoni were studied radioautographically in order to ascertain the effect of exposures to a fixed concentration of colchicine (5 × 10?4M) for varying time intervals upon the incorporation of [3H]proline in the tegument. Additionally, a study was made on the effect of varying time exposures of colchicine on the cytochemical localization of alkaline phosphatase (EC 3.1.3.1) in the tegumental invaginations. Worms exposed to colchicine for more than 2 hr preceding addition of the labeled amino acid displayed significant changes in the pattern of distribution. The most profound change was noted in the male tegument where a statistically significant decrease was observed in treated worms. Female worms, on the other hand, failed to display any effect of the drug on the distribution pattern for the times utilized. The distribution of alkaline phosphatase activity was much reduced in the teguments of both sexes. Morphological effects of the drug included disappearance of microtubules from the cytoplasmic connectives, a stacking of RER in the subtegumental cells, and accumulation of discoid granules and membranous bodies in the subtegumental cells. It is hypothesized that the amino acid is associated with the discoid granule at the subtegumental cell level and is ultimately translocated, with the aid of microtubules in the cytoplasmic connectives, to the tegument. Alkaline phosphatase activity is assumed to be associated with the membranous body.  相似文献   

20.

Background

The gastrointestinal epithelium provides a physical and biochemical barrier to the passage of ions and small molecules; however this barrier may be breached by pathogens and toxins. The effect of individual pathogens/toxins on the intestinal epithelium has been well characterized: they disrupt barrier tissue in a variety of ways, such as by targeting tight junction proteins, or other elements of the junctions between adjacent cells. A variety of methods have been used to characterize disruption in barrier tissue, such as immunofluorescence, permeability assays and electrical measurements of epithelia resistance, but these methods remain time consuming, costly and ill-suited to diagnostics or high throughput toxicology.

Methods

The advent of organic electronics has created a unique opportunity to interface the worlds of electronics and biology, using devices such as the organic electrochemical transistor (OECT), whose low cost materials and potential for easy fabrication in high throughput formats represent a novel solution for assessing epithelial tissue integrity.

Results

In this study, OECTs were integrated with gastro-intestinal cell monolayers to study the integrity of the gastrointestinal epithelium, providing a very sensitive way to detect minute changes in ion flow across the cell layer due to inherent amplification by the transistor.

Major conclusions

We validate the OECT against traditional methods by monitoring the effect of toxic compounds on epithelial tissue. We show a systematic characterization of this novel method, alongside existing methods used to assess barrier tissue function.

General significance

The toxic compounds induce a dramatic disruption of barrier tissue, and the OECT measures this disruption with increased temporal resolution and greater or equal sensitivity when compared with existing methods. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号