首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DDB1 was originally identified as a heterodimeric complex with DDB2 and plays an accessory role in nucleotide excision repair. DDB1 also constitutes an E3 ubiquitin ligase complex together with Cul4A and Roc1 and acts as an adaptor, suggesting its multiple roles beyond DNA repair. We have generated a conditional DDB1-knockout mutant using a chicken B lymphocyte line DT40. Doxycycline-induced DDB1 depletion caused a severe growth defect followed by apoptotic cell death. Flow cytometric analyses revealed that cell cycle progression is initially retarded at all phases and subsequently impaired at S phase along with the appearance of sub-G1 population. Similarly, DDB1-knockdown in human U2OS cells by small interfering RNA exhibited a loss of clonogenic activity and perturbed cell cycle progression. These results demonstrate that the DDB1 gene is indispensable for cell viability in higher vertebrates and this conditional DDB1-knockout clone would be highly useful for the functional analysis of DDB1.  相似文献   

2.
Adrenal chromaffin cells have been successfully used to attenuate chronic pain when transplanted near the spinal cord, but primary cells are neither homogeneous nor practical for routine use in human therapy. Conditional immortalization with the temperature-sensitive allele of the large T antigen (tsTag) and creation of stable chromaffin cell lines would advance our understanding of both the use and limits of cell lines that contain this immortalization gene for such therapies. Cultures of embryonic day 17 rat adrenal and neonatal bovine adrenal cells were immortalized with the temperature-sensitive allele of SV40 tsTag and chromaffin cell lines established. The rat chromaffin line, RAD5.2, and the bovine chromaffin cell line, BADA.20, both expressed immunoreactivities (ir) for all the catecholamine enzymes: tyrosine hydroxylase (TH), the first enzyme in the synthetic pathway for catecholamines, dopa-beta-hydroxylase (DbetaH), and phenylethanolamine-N-methyltransferase (PNMT). At permissive temperature (33 degrees C), these chromaffin cells are proliferative, have a typical rounded chromaffinlike morphology, and contain detectable TH-, DbetaH-, and PNMT-ir. At nonpermissive temperature (39 degrees C), these cells stop proliferating, decrease Tag expression, and change the expression of TH-, DbetaH-, and PNMT-ir in vitro, suggesting increased differentiation at nonpermissive temperature. The chromaffin cell lines also express immunoreactivity for the opioid met-enkephalin (ENK) at permissive and nonpermissive temperatures. The expression of TH-ir in the bovine chromaffin cells is upregulated by the addition of dexamethasone (DEX) or forskolin during differentiation; TH-ir is not affected by the addition of DEX or forskolin in the rat chromaffin cells. The addition of forskolin during differentiation upregulates the expression of DbetaH-ir in the rat chromaffin cells. PNMT-ir is not affected by differentiation or agents in either cell line. However, catecholamine synthesis was not detectable by high-performance liquid chromatography, suggesting incomplete differentiation under current conditions, or influence by continued low levels of Tag expression. Both cell lines have been carried over many passages in vitro for more than 3 years and were repeatedly frozen and thawed. These data describe an initial step in the conditional immortalization of chromaffin cells that can maintain the phenotype of primary chromaffin cells in vitro over long periods. The use of such chromaffin cell lines that are able to deliver neuroactive molecules offers a novel approach to pain management.  相似文献   

3.
We have reported that mitochondrial DNA-depleted rho(0) cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of rho(0) cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if rho(0) cells have features simulating aged cells. SK-Hep1 hepatoma rho(0) cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated beta-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 rho(0) cells. These results support the mitochondrial theory of aging, and suggest that rho(0) cells could serve as an in vitro model for aged cells.  相似文献   

4.
Bcl-2 inhibits cell proliferation by delaying G0/G1 to S phase entry. We tested the hypothesis that Bcl-2 regulates S phase entry through mitochondrial pathways. Existing evidence indicates mitochondrial adenosine tri-phosphate (ATP) and reactive oxygen species (ROS) are important signals in cell survival and cell death, however, the molecular details of how these 2 processes are linked remain unknown. In this study, 2 cell lines stably expressing Bcl-2, 3T3Bcl-2 and C3HBcl-2, and vector-alone PB controls were arrested in G0/G1 phase by serum starvation and contact inhibition, and ATP and ROS were measured during re-stimulation of cell cycle entry. Both ATP and ROS levels were decreased in G0/G1 arrested cells compared with normal growing cells. In addition, ROS levels were significant lower in synchronized Bcl-2 cells than those in PB controls. After re-stimulation, ATP levels increased with time, reaching peak value 1–3 hours ahead of S phase entry for both Bcl-2 cells and PB controls. Consistent with 2 hours of S phase delay, Bcl-2 cells reached ATP peaks 2 hours later than PB control, which suggests a rise in ATP levels is required for S phase entry. To examine the role of ATP and ROS in cell cycle regulation, ATP and ROS level were changed. We observed that elevation of ATP accelerated cell cycle progression in both PB and Bcl-2 cells, and decrease of ATP and ROS to the level equivalent to Bcl-2 cells delayed S phase entry in PB cells. Our results support the hypothesis that Bcl-2 protein regulates mitochondrial metabolism to produce less ATP and ROS, which contributes to S phase entry delay in Bcl-2 cells. These findings reveal a novel mechanistic basis for understanding the link between mitochondrial metabolism and tumor-suppressive function of Bcl-2.  相似文献   

5.
Escape from TGF-beta inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-beta adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf-/- mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-beta signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-beta adaptor protein in suppressing early lung cancer.  相似文献   

6.
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation.  相似文献   

7.
PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol?/?) on the downstream maintenance of cells after UV damage. We report that PrimPol?/? cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol?/? arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol?/? cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase.  相似文献   

8.
Ataxin-2, the gene product of the Spinocerebellar Ataxia Type 2 (SCA2) gene, is a protein of unknown function with abundant expression in embryonic and adult tissues. Its interaction with A2BP1/Fox-1, a protein with an RNA recognition motif, suggests involvement of ataxin-2 in mRNA translation or transport. To study the effects of in vivo ataxin-2 function, we generated an ataxin-2 deficient mouse strain. Ataxin-2 deficient mice were viable. Genotypic analysis of litters from mating of heterozygous mice showed segregation distortion with a significant reduction in the birth of Sca-/- females. Detailed macroscopic and microscopic analysis of surviving nullizygous Sca2 knockout mice showed no major histological abnormalities. On a fat-enriched diet, ataxin-2 deficient animals had increased weight gain. Our results demonstrate that ataxin-2, although widely expressed, is not essential in development or during adult survival in the mouse, but leads to adult-onset obesity.  相似文献   

9.
Non-homologous end joining (NHEJ) plays a major role in the repair of ionizing radiation-induced DNA double-strand breaks (DSBs), especially during the G1-phase of the cell cycle. Using a flow cytometric cell sorter, we fractionated G1- and S/G2-phase cells based on size to assess the DSB-repair activity in NHEJ factor-deficient DT40 and Nalm-6 cell lines. Colony formation assays revealed that the X-ray sensitivities of the G1-enriched populations correctly reflected the DSB-repair activities of both the DT40 and Nalm-6 cell lines. Furthermore, as assessed by γ-H2AX foci formation, the sorted cells exhibited less DNA damage than chemically synchronized cells. Given that it does not use fluorescent labeling or chemical agents, this method of cell sorting is simpler and less toxic than other methods, making it applicable to a variety of cell lines, including those that cannot be synchronized by standard chemical treatments.  相似文献   

10.
The ubiquitylation cascade plays an important role in the recruitment of repair factors at DNA double-strand breaks. The involvement of a growing number of ubiquitin E3 ligases adds to the complexity of the DNA damage-induced ubiquitin signaling. Here we use the genetically tractable avian cell line DT40 to investigate the role of HERC2, RNF8 and RNF168 in the DNA damage-induced ubiquitylation pathway. We show that formation of ubiquitin foci as well as cell survival after DNA damage depends on both RNF8 and RNF168. However, we find that RNF8 and RNF168 knockout cell lines respond differently to treatment with camptothecin indicating that they do not function in a strictly linear manner. Surprisingly, we show that HERC2 is required neither for survival nor for ubiquitin foci formation after DNA damage in DT40. Moreover, the E3 ubiquitin ligase activity of HERC2 is not redundant to that of RNF8 or RNF168.  相似文献   

11.
《Free radical research》2013,47(10):1275-1284
Abstract

Mitochondrial oxidative damage is hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Melatonin, an indolamine synthesized in the pineal gland, shows a wide range of physiological functions, and is under clinical investigation for expanded applications. Melatonin has demonstrated efficient protective effects against various types of oxidative damage in the liver system. This study investigates the protective effects of melatonin pretreatment on glycochenodeoxycholic acid (GCDCA)-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. Melatonin markedly decreased mitochondrial ROS (mROS) production in L02 cells treated with 100 μM GCDCA, and inhibited GCDCA-stimulated cytotoxicity. Notably, melatonin exerted its hepatoprotective effects by upregulating sirtuin 3 (SIRT3) activity and its expression level, thus regulating superoxide dismutase 2 (SOD2) acetylation and inhibiting the production of mROS induced by GCDCA. Moreover, siRNA targeting SIRT3 blocked the melatonin-mediated elevation in mitochondrial function by inhibiting SIRT3/SOD2 signaling. Importantly, melatonin-activated SIRT3 activity was completely abolished by AMP-activated, alpha 1 catalytic subunit (AMPK) siRNA transfection. Similar results were obtained in rat with bile duct ligation or BDL. In summary, our findings indicate that melatonin is a novel hepatoprotective small molecule that functions by elevating SIRT3, stimulating SOD2 activity, and suppressing mitochondrial oxidative stress at least through AMPK, and that SIRT3 may be of therapeutic value in liver cell protection for GCDCA-induced hepatotoxicity.  相似文献   

12.
13.
14.
用不同浓度的Pb^2+及Pb^2++Ca^2+处理大蒜,测定其超氧化物歧化酶(SOD)、过氧化物酶(POD)活性,研究Pb^2+对大蒜SOD、POD的影响及Ca^2+的解毒作用。结果表明:一定浓度的Pb^2+能诱导SOD、POD活性,超过此浓度,SOD、POD活性下降,破坏其抗氧化防御系统;随着时间的延长,SOD、POD的活性先升后降,这是大蒜对逆境胁迫的一种适应;50mg/m^3的Ca^2+对Pb^2+有一定程度的解毒作用。  相似文献   

15.
Comment on: Tang M, et al. Mol Biol Cell 2011; 22:437-47.  相似文献   

16.
Reactive oxygen species (ROS) are constantly generated and eliminated in the biological system and play important roles in a variety of physiological and pathological processes. Previous studies indicate that modulation of cellular ROS affects cell proliferation. Thymosin alpha 1 (Tα1) is a naturally occurring thymic peptide and has previously been shown to be a potential therapy for some immunodeficiencies, malignancies, and infections. However, few reports have focused on manipulation of cellular ROS level effects of Tα1. In this study, the Tα1-treated leukomonocytes, which were isolated from mice spleens, exhibited a higher ROS level and a lower reduced glutathione (GSH) level; however, HepG2 cells treated with Tα1 exhibited lower ROS level and higher GSH level. In addition, after treatment with Tα1, the population of leukomonocytes in the G2 phase increased, resulting in a slight increase in viability. However, in Tα1-treated HepG2 cells, the cell cycle was delayed in the G1 phase, thereby inhibiting tumor cell proliferation; in addition, dephosphorylation of the serine/threonine kinase Akt was detected. In conclusion, we show that Tα1 has potent anti-proliferative activity against malignant human hepatoma cells and proliferative activity against leukomonocytes associated with manipulation of oxidative stress levels which indicates the potential of Tα1 as an antitumor drug.  相似文献   

17.
Maintaining the functional integrity of mitochondria is crucial for cell function, signal transduction and overall cell activities. Mitochondrial dysfunctions may alter energy metabolism and in many cases are associated with neurological diseases. Recent studies have reported that mutations in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1), a mitochondrial protein encoding gene, could cause neurological abnormalities. However, the function of DHTKD1 in mitochondria remains unknown. Here, we report a strong correlation of DHTKD1 expression level with ATP production, revealing the fact that DHTKD1 plays a critical role in energy production in mitochondria. Moreover, suppression of DHTKD1 leads to impaired mitochondrial biogenesis and increased reactive oxygen species (ROS), thus leading to retarded cell growth and increased cell apoptosis. These findings demonstrate that DHTKD1 contributes to mitochondrial biogenesis and function maintenance.  相似文献   

18.
Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.  相似文献   

19.
Bioactivity-guided study led to the isolation of a natural phenylpropionate derivative, (E)-3-(4-hydroxy-2-methoxyphenyl)-propenoic acid 4-hydroxy-3-methoxyphenyl ester from the roots of Mirabilis himalaica. Cellular analysis showed that compound 1 specifically inhibited the cancer cell growth through the S phase arrest. Mechanistically, compound 1 was able to induce the apoptosis in HepG2 cells through mitochondrial apoptosis pathway in which Bcl-2 and p53 were required. Interestingly, the cellular phenotype of compound 1 were shown specifically in cancer cells originated from hepatocellular carcinoma (HepG2) while compromised influence by compound 1 were detected within the normal human liver cells (L-02). Consistently, the in vivo inhibitory effects of compound 1 on tumor growth were validated by the in xenograft administrated with HepG2 cells. Our results provided a novel compound which might serve as a promising candidate and shed light on the therapy of the hepatocellular carcinoma.  相似文献   

20.
With the aim to identify events involved in the determination of p53-dependent apoptosis versus growth arrest, we used rat embryo fibroblasts expressing a temperature-sensitive mutant (tsA58) of the SV40 large tumour antigen (LT). Heat-inactivation of LT leads to p53 activation and commitment to a senescent-like state (REtsA15 cell line) or apoptosis (REtsAF cell line). We report that senescence is associated with high levels of the anti-apoptotic Bcl-2 protein and a cell cycle arrest in G1 phase, whereas apoptosis is associated with low levels of Bcl-2 and a cell cycle arrest in G2 phase. Here we show that Bcl-2, which can inhibit apoptosis and proliferation, turns the apoptotic phenotype into a senescent-like phenotype in G2 phase. This result suggests that Bcl-2-dependent inhibition of apoptosis could be crucial for the commitment to replicative senescence, whereas its ability to inhibit G1 progression would not be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号