首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

2.
Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk+ hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk+ hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk+ hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.  相似文献   

3.
Hepatoblasts are hepatic progenitor cells that expand and give rise to either hepatocyte or cholangiocytes during liver development. We previously reported that delta-like 1 homolog (DLK1) is expressed in the mouse liver primordium at embryonic day (E) 10.5 and that DLK1+ cells in E14.5 liver contain high proliferative and bipotential hepatoblasts. While the expression of epithelial cell adhesion molecule (EpCAM) in hepatic stem/progenitor cells has been reported, its expression profile at an early stage of liver development remains unknown. In this study, we show that EpCAM is expressed in mouse liver bud at E9.5 and that EpCAM+DLK1+ hepatoblasts form hepatic cords at the early stage of hepatogenesis. DLK1+ cells of E11.5 liver were fractionated into EpCAM+ and EpCAM cells; one forth of EpCAM+DLK1+ cells formed a colony in vitro whereas EpCAMDLK1+ cells rarely did it. Moreover, EpCAM+DLK1+ cells contained cells capable of forming a large colony, indicating that EpCAM+DLK1+ cells in E11.5 liver contain early hepatoblasts with high proliferation potential. Interestingly, EpCAM expression in hepatoblasts was dramatically reduced along with liver development and the colony-forming capacities of both EpCAM+DLK1+ and EpCAMDLK1+ cells were comparable in E14.5 liver. It strongly suggested that most of mouse hepatoblasts are losing EpCAM expression at this stage. Moreover, we provide evidence that EpCAM+DLK1+ cells in E11.5 liver contain extrahepatic bile duct cells as well as hepatoblasts, while EpCAMDLK1+ cells contain mesothelial cell precursors. Thus, the expression of EpCAM and DLK1 suggests the developmental pathways of mouse liver progenitors.  相似文献   

4.
In mammals, definitive erythropoiesis first occurs in fetal liver (FL), although little is known about how the process is regulated. FL consists of hepatoblasts, sinusoid endothelial cells and hematopoietic cells. To determine niche cells for fetal liver erythropoiesis, we isolated each FL component by flow cytometry. mRNA analysis suggested that Dlk-1-expressing hepatoblasts primarily expressed EPO and SCF, genes encoding erythropoietic cytokines. EPO protein was detected predominantly in hepatoblasts, as assessed by ELISA and immunohistochemistry, and was not detected in sinusoid endothelial cells and hematopoietic cells. To characterize hepatoblast function in FL, we analyzed Map2k4−/− mouse embryos, which lack hepatoblasts, and observed down-regulation of EPO and SCF expression in FL relative to wild-type mice. Our observations demonstrate that hepatoblasts comprise a niche for erythropoiesis through cytokine secretion.  相似文献   

5.
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.Subject terms: Developmental biology, Stem-cell differentiation, Stem-cell differentiation, Developmental biology  相似文献   

6.
Leukotriene C4 is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C4 synthase (LTC4S) participate in its biosynthesis. We report evidence from insitu hybridization experiments that FLAP mRNA is abundantly expressed in fetal mouse liver from e11.5 until delivery. In contrast very little or no FLAP mRNA was detected in adult liver. The fetal expression in liver was not uniform but occurred in patches. Cells from e15.5 livers were fractionated by fluorescence activated cell sorting into hepatocytes and other CD45 cells and CD45+ hematopoietic cells. The latter were further separated into immature (Lin) and mature (Lin+) cells and analyzed for FLAP mRNA content by quantitative RT-PCR. FLAP mRNA expression was confined to CD45+ cells and the mature cells had approximately 4-fold higher FLAP mRNA levels compared to the immature cells.  相似文献   

7.
8.
Fetal liver, the major site of hematopoiesis during embryonic development, acquires additional various metabolic functions near birth. Although liver development has been characterized biologically as consisting of several distinct steps, the molecular events accompanying this process are just beginning to be characterized. In this study, we have established a novel culture system of fetal murine hepatocytes and investigated factors required for development of hepatocytes. We found that oncostatin M (OSM), an interleukin-6 family cytokine, in combination with glucocorticoid, induced maturation of hepatocytes as evidenced by morphological changes that closely resemble more differentiated hepatocytes, expression of hepatic differentiation markers and intracellular glycogen accumulation. Consistent with these in vitro observations, livers from mice deficient for gp130, an OSM receptor subunit, display defects in maturation of hepatocytes. Interestingly, OSM is expressed in CD45(+) hematopoietic cells in the developing liver, whereas the OSM receptor is expressed predominantly in hepatocytes. These results suggest a paracrine mechanism of hepatogenesis; blood cells, transiently expanding in the fetal liver, produce OSM to promote development of hepatocytes in vivo.  相似文献   

9.
Lgr5 is a marker for proliferating stem cells in adult intestine, stomach, and hair follicle. However, Lgr5 is not expressed in adult hematopoietic stem and progenitor cells (HSPCs). Whether Lgr5 is expressed in the embryonic and fetal HSPCs that undergo rapid proliferation is unknown. Here we report the detection of Lgr5 expression in HSPCs in the aorta-gonad-mesonephros (AGM) and fetal liver. We also found that a portion of Lgr5+ cells expressed the Runx1 gene that is critical for the ontogeny of HSPCs. A small portion of Lgr5+ cells also expressed HSPC surface markers c-Kit and CD34 in AGM or CD41 in fetal liver. Furthermore, the majority of Lgr5+ cells expressed Ki67, indicating their proliferating state. Transplantation of fetal liver-derived Lgr5-GFP+ cells (E12.5) demonstrated that Lgr5-GFP+ cells were able to reconstitute myeloid and lymphoid lineages in adult recipients, but the engraftment was short-term (4–8 weeks) and 20-fold lower compared with the Lgr5-GFP control. Our data show that Lgr5-expressing cells mark short-term hematopoietic stem and progenitor cells, consistent with the role of Lgr5 in supporting HSPCs rapid proliferation during embryonic and fetal development.  相似文献   

10.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

11.
Fetal liver is the major embryonic hematopoietic organ and is extrinsically colonized by circulating hematopoietic stem cells (HSCs). Integrin beta-1 expression on HSCs is crucial for colonization, suggesting that interaction of Integrin beta-1 with extra-cellular matrix (ECM) factors promotes HSC adherence to fetal liver. However, little is known about how ECM production is regulated in fetal liver. Here we used flow cytometry to sort fetal liver compartments and detected ECM gene and protein expression predominantly in sorted hepatoblasts. mRNA and protein analysis suggested that TGF-beta-1 expressed by hepatoblasts, sinusoid endothelial cells and hematopoietic cells, binds to the TGF-beta receptor type-2 expressed on hepatoblasts to stimulate ECM production. Intra-cardiac injection of TGF-inhibitors into mouse embryos dramatically decreased fetal liver ECM gene expression. Taken together, our observations suggest that hepatoblasts predominantly produce ECM factors under control of TGF-beta-1 in fetal liver.  相似文献   

12.
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.  相似文献   

13.
In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.  相似文献   

14.
15.
16.
The functional heterogeneity of hematopoietic stem cells (HSCs) has been comprehensively investigated by single-cell transplantation assay. However, the heterogeneity regarding their physiological contribution remains an open question, especially for those with life-long hematopoietic fate of rigorous self-renewing and balanced differentiation capacities. In this study, we revealed that Procr expression was detected principally in phenotypical vascular endothelium co-expressing Dll4 and CD44 in the mid-gestation mouse embryos, and could enrich all the HSCs of the embryonic day 11.5 (E11.5) aorta-gonad-mesonephros (AGM) region. We then used a temporally restricted genetic tracing strategy to irreversibly label the Procr-expressing cells at E9.5. Interestingly, most labeled mature HSCs in multiple sites (such as AGM) around E11.5 were functionally categorized as lymphomyeloid-balanced HSCs assessed by direct transplantation. Furthermore, the labeled cells contributed to an average of 7.8% of immunophenotypically defined HSCs in E14.5 fetal liver (FL) and 6.9% of leukocytes in peripheral blood (PB) during one-year follow-up. Surprisingly, in aged mice of 24 months, the embryonically tagged cells displayed constant contribution to leukocytes with no bias to myeloid or lymphoid lineages. Altogether, we demonstrated, for the first time, the existence of a subtype of physiologically long-lived balanced HSCs as hypothesized, whose precise embryonic origin and molecular identity await further characterization.  相似文献   

17.
Fascin-1 is an actin-bundling protein localized at the core actin bundles within microvillar projections and filopodial extensions in migrating cells. It is expressed at a low level in normal epithelial cells, but at a high level in tumor cells, indicating its importance in the invasion and motility of tumor cells. In addition, fascin-1 is expressed in human and murine embryos, occurring at high levels especially in developing nervous tissues. In this study, we have investigated the expression patterns of fascin-1 immunohistochemically during the early stages of rat hepatogenesis. A high expression of fascin-1 was detected in the liver bud and hepatoblasts at embryonic day (ED) 10.5, ED11.5, and ED12.5. Expression fell by ED13.5 and was not detectable at ED14.5. These observations demonstrate that the expression of fascin-1 is correlated with the migration activity of hepatoblasts during the early stages of liver development in rats. This study was supported in part by grant-in-aid for scientific research from the Japan Society for the Promotion of Science and by a grant from the Smoking Research Foundation, Japan.  相似文献   

18.
19.
During murine embryonic development, primitive hematopoiesis occurs in the yolk sac (YS). Recent studies have shown that the YS also harbors definitive hematopoietic activity. However, the population of YS cells contributing to definitive hematopoiesis has not been identified. In this study, we characterized the hematopoietic cell populations in the YS of mouse embryos from E9.5 to E14.5 in view of the expression profiles of CD45 and c-Kit. The YS cells from E9.5 to E11.5 could be divided into six populations: CD45(-) c-Kit(-) , CD45(-) c-Kit(low) , CD45(-) c-Kit(high) , CD45(low) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) . Among these populations, CD45(low) c-Kit(high) cells showed the highest multilineage hematopoietic colony-forming activity. Later in development, the YS cells from E12.5 to E14.5 lost the second and fourth populations (i.e., they retained CD45(-) c-Kit(-) , CD45(-) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) cells), and concurrently with the disappearance of the CD45(low) c-Kit(high) population, no significant hematopoietic activity was found in any of the populations on and after E12.5. CD45(low) c-Kit(high) YS cells, which had a round morphology with a large nucleus, possessed the ability to differentiate into myeloid and B lymphoid cells when cultured with stromal cells. These findings suggest that CD45(low) c-Kit(high) YS cells include more undifferentiated cells than the other YS cell populations and possess in vitro potency to differentiate into multilineage hematopoietic cells. Furthermore, this cell population disappears from the YS at around E12.5, when the site of hematopoiesis has already shifted to the fetal liver and the placenta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号