首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

2.
The reactions of halo-alkynes Cl-CCH, C-lCC-Cl or PhCC-I with solutions of Li+[MeAuMe] in diethylether containing Ph3P do not give the expected oxidative addition products Me2(RCC)Au(PPh3) with R = H, Cl, Ph. A mixture of other complexes is obtained instead which are generated in secondary reactions involving reductive elimination of ethane and/or dialkyne. However, addition of the halo-alkene H(Cl)CCCl2 to the same substrate solution affords trans-Me2[trans-H(Cl)CC(Cl)]Au(PPh3) in good yield. Its molecular structure with pseudo-Cs symmetry has been determined by the solution NMR spectra and a single-crystal X-ray diffraction study. The reaction of methyl iodide with solutions of Li+[RCCAuCCR] in diethylether containing PPh3 give the quaternary salts Ph3PMe+ [RCCAuCCR] as the main products and only small amounts of cis-Me2(RCC)Au(PPh3) complexes probably formed in a series of oxidative addition, reductive elimination, and substitution reactions. The structure of Ph3PMe+ [PhCCAuCCPh] has been determined.  相似文献   

3.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

4.
5.
6.
7.
Pyrazine- and pyridine-based π-conjugated σ-donor molecules, such as 4,4′-bipyridine, 1,2-di(4-pyridyl)ethylene, 3,5-dipyridyl-1,2,4-triazole, N,N′-bis(4-pyridylmethylidene)benzene-1,4-diamine, 2,5-di(pyridylmethylidene)cyclopentanone, 2,6-di(4-pyridylmethylidene)cyclohexanone (LL, 2a-2g) can successfully be used to span heterobimetallic π-tweezer units of the type [{[Ti](μ-σ,π-CCSiMe3)2}M]+ ([Ti] = (η5-C5H4SiMe3)2Ti; M = Cu, Ag). The thus accessible di-cationic species [{[Ti](μ-σ,π-CCSiMe3)2}MLLM{(Me3SiCC-μ-σ,π)2[Ti]}]2+ (4), which are formed via the formation of [{[Ti](μ-σ,π-CCSiMe3)2}MLL]+ (3) complexes, can be isolated in yields between 66% and 99%.However, when C5H4NCHCHC6H4CHCHNC5H4 (5a) and C5H4NCHNC6H4CHCHNC5H4 (5b), respectively, are reacted with {[Ti](μ-σ,π-CCSiMe3)2}AgBF4(1c) in a 1:1 molar ratio, then the silver(I) ion is released from the organometallic π-tweezer 1c and coordination polymers [AgBF4 · 5a]n (6a) and [AgBF4 · 5b]n (6b) along with [Ti](CCSiMe3)2 (7) are formed in quantitative yield.  相似文献   

8.
Bis(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)OR], as well as mono(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)Ph], of chromium and tungsten are accessible from propynones [HCCC(O)Ph] or propynoic acid esters [HCCC(O)OR; R = Et, (−)-menthyl, endo-bornyl] by the following reaction sequence: (a) deprotonation of the alkynes, (b) reaction with [(CO)5M-THF] (M = Cr, W), and (c) alkylation of the resulting alkynyl metallate, [(CO)5MCCC(O)R], with Meerwein salts. Vinylidene complexes, [(CO)5MCC(R′)C(O)OR], are formed as a by-product by Cβ-alkylation of the alkynyl metallate. Dimethylamine displaces one alkoxy substituent of the bis(alkoxy)allenylidene complexes to give dimethylamino(alkoxy)allenylidene complexes, [(CO)5MCCC(OR)NMe2]. The analogous reaction of dimethylamine with a mono(alkoxy)-substituted allenylidene complex affords the aminoallenylidene complex [(CO)5CrCCC(NMe2)Ph]. When the amine is used in large excess, the α,β-unsaturated aminocarbene complex [(CO)5CrC(NMe2)C(H)C(NMe2)Ph] is additionally formed by addition of the amine across the CαCβ-bond of the allenylidene ligand. The reaction of [(CO)5MCCC(OEt)2] with dimethyl ethylenediamine offers access to bis(amino)allenylidene complexes, in which Cγ is part of a five-membered heterocycle. Photolysis of bis(alkoxy)allenylidene complexes in the presence of triphenylphosphine yields tetracarbonyl- and tricarbonyl{bis(phosphine)}allenylidene complexes. Diethylaminopropyne inserts into the CβCγ bond of [(CO)5MCCC(OEt)OMethyl] to give alkenylallenylidene complexes. Subsequent acid-catalyzed intramolecular cyclization affords a pyranylidene complex.  相似文献   

9.
Arjun Tiwari 《BBA》2009,1787(8):985-994
This study provides evidence for the superoxide oxidase and the superoxide reductase activity of cytochrome b559 (cyt b559) in PSII. It is reported that in Tris-treated PSII membranes upon illumination, both the intermediate potential (IP) and the reduced high potential (HPred) forms of cyt b559 exhibit superoxide scavenging activity and interconversion between IP and HPred form. When Tris-treated PSII membranes were illuminated in the presence of spin trap EMPO, the formation of superoxide anion radical (O2) was observed, as confirmed by EPR spin-trapping spectroscopy. The observations that the addition of enzymatic (superoxide dismutase) and non-enzymatic (cytochrome c, α-tocopherol and Trolox) O2 scavengers prevented the light-induced conversion of IP ↔ HPred cyt b559 confirmed that IP and HPred cyt b559 are reduced and oxidized by O2, respectively. Redox changes in cyt b559 by an exogenous source of O2 reconfirmed the superoxide oxidase and reductase activity of cyt b559. Furthermore, the light-induced conversion of IP to HPred form of cyt b559 was completely inhibited at pH > 8 and by chemical modification of the imidazole ring of histidine residues using diethyl pyrocarbonate. We proposed that a change in the environment around the heme iron, induced by the protonation and deprotonation of His22 residue generates a favorable condition for the oxidation and reduction of O2, respectively.  相似文献   

10.
A new pyrazole-based ligand, namely 1,3-bis(3,5-dimethylpyrazol-1-yl)-2-butanoic acid (Hbdmpb) was synthesised together with its copper complex Na[Cu(bdmpb)2(OOCCH3)H2O] · 4H2O. Both the free ligand and its Cu compound were fully characterised and their crystal structures were determined by X-ray analysis. The free-ligand molecular structure is uneventful. The Cu compound is highly unusual, as the pyrazole nitrogen atoms do not bind to the Cu ion. The copper(II) ion is coordinated by four nearly coplanar oxygen atoms from two dehydronated ligands bdmpb (CuO(1a) 1.942(4), CuO(1b) 1.933(4) Å), a monodentate acetate group (CuO(1) 1.927(3) Å) and a water molecule (CuO(1w) 1.937(4) Å). The nitrogen atoms of the pyrazole rings do not coordinate to the metal center, but instead are involved in strong intramolecular hydrogen bonds. The coordinated water molecule is strongly H-bonded to two pyrazole N atoms from two bdmpb ligands (N(12a) ? HO(1w) 2.762(7), N(12b) ? HO(1w) 2.774(7) Å). The other two pyrazole N atoms with a lone pair are hydrogen-bonded to water molecules in the lattice (N(22a) ? HO(2w) 2.763(7), N(22b) ? HO(6w) 2.892(7) Å). The sodium ion is six-coordinated by the oxygen atom O(2) of the acetato ligand and by five water molecules. The EPR spectrum recorded in the solid state shows a characteristic signal for an axial anisotropic S = 1/2 species. The spectrum recorded in methanol glass confirms the absence of the coordination of pyrazole nitrogen atoms to the copper centers.  相似文献   

11.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

12.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

13.
Alkynyl Pd(II) azido complexes of the type [Pd(N3)(CCR)L2] (1-3) were obtained by reactions of aqueous NaN3 with [Pd(Cl)(CCR)L2] (R = Ph or C(O)OMe). Treating compounds 1-3 with organic isocyanides (R-NC) afforded novel complexes, trans-[Pd(CCPh)(NCNR)(PMe3)2] (R = 2,6-Me2C6H3 (4) or 2,6-Et2C6H3 (5)) and trans-[Pd(CCR)(CN4-t-Bu)L2] (6: L = PMe3, R = Ph; 7: L = PEt3, R = C(O)OMe; 8: L = PMe3, R = C(O)OMe), which contain either a carbodiimido or a C-coordinated tetrazolato group. Reactions of compounds 1 and 2 with R-NCS (R = 2,6-Me2C6H3 or CH2CH3) and 1,4-phenylene diisothiocyanate (C6H4(NCS)2) smoothly proceeded to give tetrazole-thiolato complexes, trans-[Pd(CCPh)(SCN4-R)L2] (L = PMe3, R = Et (9) or 2,6-Me2C6H3 (10); L = PEt3, R = 2,6-Me2C6H3 (11)), and a phenylene-bridged dinuclear Pd(II) tetrazole-thiolato complex, [(PEt3)2(CCPh)Pd(SCN4-(μ-C6H4)-SCN4)Pd(CCPh)(PEt3)2] (12), respectively. Complexes 9-12 contain the Pd-S bond that is formed by the dipolar cycloaddition of the organic isothiocyanate to the Pd-azido bond. In contrast, the corresponding reactions of compounds 1and 2 with C6F5CN and Me3SiCN (organic nitriles, R-CN) gave an N-coordinated Pd(II)-tetrazolato compound {trans-[Pd(CCPh)(N4C-C6F5)(PMe3)2] (13)} and a mixture of Pd(II)-cyano complexes {trans-[Pd(CCPh)(CN)(PEt3)2] (14) and [Pd(CN)2(PEt3)2] (15)}, respectively. Bis(phosphine) bis(cyano) complexes of Pd and Ni, [M(CN)2L2] (L = PEt3, PMe3; L2 = DEPE), could be obtained independently by the reactions of [M(N3)2L2] with excess Me3SiCN in organic solvents.  相似文献   

14.
The synthesis and evaluation of Cy[N,N]NiX2 complexes (where Cy[N,N] = C6H11NCHCHNC6H11; X = Cl, Br) as catalysts for atom transfer radical polymerization are reported. Cy[N,N]NiCl2 offers poor control over the polymerization of MMA and styrene due to catalyst insolubility. The more soluble bromo catalyst Cy[N,N]NiBr2, promotes rapid styrene polymerization, but with inefficient initiation, affording higher than expected molecular weights based on [M]o/[I]o ratios. Utilizing 1-PEBr results in efficient initiation to give low polydispersities (Mw/Mn ∼ 1.2) and polystyrene molecular weights that correlate with monomer:initiator ratios.  相似文献   

15.
Raman spectroscopy was used to distinguish the differences in the molecular organization of the α, β′ and β polymorphs, as well as the liquid state, of tristearin with focus placed on the CO, CH and CC Raman-active stretching regions. The ester carbonyl stretching region permitted polymorphic discrimination due to significant differences in the number of modes, their relative frequencies and their full-widths at half-maximum. In the liquid state, the absence of obvious signatures in this region indicated that many local micro-environments likely exist about the ester carbonyl of molten tristearin. The ratio between the symmetrical and asymmetrical CH stretching modes was linearly correlated with the enthalpy of fusion for each polymorph. The CC stretching modes, which provided insight into the trans/gauche content, were polymorph independent, but changed significantly upon transition into the liquid state (p < 0.05). Overall, Raman spectroscopy allowed for the quick discrimination of tristearin polymorphs from a conformational and thermodynamic perspective.  相似文献   

16.
A series of new five-coordinate acyl vinyl cobalt(III) complexes Co{η1-C(CCPh)CHPh}[C(O)CCO] L2(L = PMe3) (6-10) were prepared via formal insertion of diphenylbutadiyne into Co-H function of mer-octahedral hydrido-acyl(phenolato)-cobalt(III) complexes. The complexes are diamagnetic. One square pyramidal structure of complex 6 was confirmed by X-ray diffraction analysis. These complexes are stable in solid state. In solution, six-coordinate acyl vinyl carbonyl cobalt(III) complex 11 is approved through the reaction of complex 7 with CO and the structure of complex 11 was determined by X-ray method.  相似文献   

17.
Based on their MP2 optimized structures in the ground states, we obtained solution absorption spectra for trans-[PtII(CCR)2(PH3)2] (R = H (1) and Ph (2)) and trans-[PtII(CCH)2(PH2CH2PH2)]2 (3) under the time-dependent density functional theory calculations. These absorptions agree with experimental observations. The unrestricted MP2 optimization performed for 3 in the lowest-energy triplet excited state shows that upon excitation the PtPt distance shortens about 0.347 Å with respect to the 3.188 Å one in the ground state. The UMP2 calculations estimated that its 3(dz2)σ(pz)] excited state produces the 531 nm emission, corresponding to the 580 nm one of trans-[PtII(CCPh)2(PPh2CH2PPh2)]2 in the solid state at 298 K.  相似文献   

18.
19.
20.
The new cluster Li[Fe331-SCCFc)(CO)9] reacts with ClAuPPh3 to afford compound [Fe3Au(μ42-CCFc)(CO)9(PPh3)], which exhibits an isomeric equilibrium in solution with the cluster [Fe3Au(μ32-CCFc)(CO)9(PPh3)].The rupture of C-S bonds in the thioethers Me3SiCCSCCR (R = Fc, SiiPr3) in the presence of Fe3(CO)12, yields to the clusters [Fe3(μ-SCCSiiPr3)(μ-CCSiMe3)(CO)9] and [Fe3(μ,η2-(SiiPr3)CCCCSiMe3)(μ3-S)(CO)9] together with the unexpected compounds [Fe2(μ-SCC(H)R)(CO)6] (R = SiMe3, SiiPr3).Additionally, the dinuclear derivatives [Fe2(μ-SCCR)(μ-CCR′)(CO)6] (R = Fc, R′ = SiMe3; R = SiMe3, R′ = Fc; R = SiMe3; R′ = SiiPr3) have also been obtained. These compounds have been spectroscopically characterized and the crystal structure of some of them has been solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号