首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcium (Ca(2+)) is an important regulator of apoptotic signaling. Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) have a high affinity for Ca(2+) ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca(2+). In addition, uterine calbindins are expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice. C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KO mice compared to WT mice. When immature mice were treated with 17β-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the expression of genes involved in apoptosis and ER stress in murine uterine tissue.  相似文献   

3.
Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) are cytosolic proteins with EF-hand motifs that have a high affinity for calcium ions. Many types of calcium channels and intracellular calcium binding proteins, such as sodium/calcium exchangers (NCXs) and transient receptor potential cation channels (TRPVs), have been detected in the placenta. In this study, the expression of calcium channels involved in maternal-fetal calcium transport were investigated in wild-type mice versus CaBP-9k, CaBP-28k, and CaBP-9k/28k double knockout (KO) mouse models. The expression of calcium transport genes in three dissected sections of the placenta (maternal, central, and fetal) was examined on gestational day 19 (GD 19). The expression of CaBP-9k, TRPV6, TRPV5, and NCX1 mRNA was high in fetal compared to maternal placenta, while CaBP-28k was abundant in the maternal placenta. CaBP-9k was enhanced in all sections of placenta in CaBP-28k KO mice, whereas CaBP-28k was reduced in CaBP-9k KO mice. The expression of TRPV6, TRPV5, and NCX1 were induced in both maternal and fetal placentas in CaBP-9k KO mice, but were upregulated in maternal and central placentas of CaBP-28k KO mice. The levels of these proteins showed similar patterns with those of their mRNA. Placental CaBP-9k, TRPV6, TRPV5, and NCX1 proteins were abundantly expressed in the intraplacental yolk sac located in the fetal placenta. CaBP-28k did not colocalize with other calcium transport genes, although it was enriched in the placental trophoblasts of the decidual zone in the maternal placenta. These results indicate that placental TRPV6, TRPV5, and NCX1 compensate for CaBPs in CaBP-9k and/or CaBP-28k KO mice, and may take over the roles of CaBP-9k and CaBP-28k to transfer calcium ions in the placenta. Taken together, these results indicate that TRPV6, NCX1, and CaBP-9k in the fetal placenta and CaBP-28k in the maternal placenta may play key roles in controlling calcium transport across the placenta during pregnancy.  相似文献   

4.
This study was designed to determine whether lipocalin type-prostaglandin D synthase (l-pgds) deficiency contributes to atherogenesis using gene knockout (KO) mice. A high-fat diet was given to 8-week-old C57BL/6 (wild type; WT), l-pgds KO (LKO), apolipoprotein E (apo E) KO (AKO) and l-pgds/apo E double KO (DKO) mice. The l-pgds deficient mice showed significantly increased body weight, which was accompanied by increased size of subcutaneous and visceral fat tissues. Fat deposition in the aortic wall induced by the high-fat diet was significantly increased in LKO mice compared with WT mice, although there was no significant difference between AKO and DKO mice. In LKO mice, atherosclerotic plaque in the aortic root was also increased and, furthermore, macrophage cellularity and the expression of pro-inflammatory cytokines such as interleukin-1β and monocyte chemoattractant protein-1 were significant increased. In conclusion, l-pgds deficiency induces obesity and facilitates atherosclerosis, probably through the regulation of inflammatory responses.  相似文献   

5.
Incubation of [26,27-3H2]-25-hydroxyvitamin D3 with kidney homogenates from rats fed a high (3%) calcium vitamin D-supplemented diet results in the production of a more polar metabolite which cochromatographs with 1,24,25-trihydroxyvitamin D3. On the other hand, incubation with kidney homogenates from vitamin D-deficient or calcium-deficient rats did not produce the polar metabolite. Mitochondria but not microsomes carry out the reaction and evidence has been produced to demonstrate that the 1,24,25-trihydroxyvitamin D3 can be produced in vivo from either 1,25-dihydroxyvitamin D3 as previously reported.  相似文献   

6.
In women, calcium excretion in the urine rises after menopause and falls with estrogen replacement therapy. The amount of calcium lost in the urine following estrogen therapy is less than should occur based on changes in serum calcium and the amount of calcium filtered by the kidney. This suggests there may be a direct effect of estrogen therapy to increase renal calcium reabsorption. Calbindin D28k is a putative calcium ferry protein located in the distal renal tubules which has been shown to increase transcellular calcium transport. We proposed that estrogen loss after menopause may diminish gene expression of renal calbindin D28k and subsequently diminish renal calcium reabsorption. We used the ovariectomized rat model of estrogen deficiency to investigate changes at the messenger RNA level of calbindin D28k in ovariectomized rats (OVX), sham ovariectomized rats (S-OVX), and estrogen treated ovariectomized rats (E-OVX). We have demonstrated that ovariectomy in rats diminishes the gene expression of renal calbindin D28k. The mRNA levels were approximately three times lower in OVX rats than S-OVX rats. Administration of 17β estradiol to OVX rats produced a significant increase in mRNA level to greater than the S-OVX rats by 4 h. Measurement of serum 1,25 dihydroxyvitamin D3 showed lower level in OVX rats than S-OVX rats but no significant change in E-OVX animals. In conclusion, our results indicate that estrogen increases renal calbindin D28k mRNA levels, by a mechanism independent of changes in 1,25 dihydroxyvitamin D3. This may result in increased expression of calbindin D28k protein which may have a role in reducing renal calcium excretion. J. Cell. Biochem. 65:340–348. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

8.
Calbindin-D9k (CaBP9k) is a vitamin D-dependent, calcium binding protein first identified in the cytoplasm of the intestinal epithelial cell. Using biotin-streptavidin immunohistochemistry, CaBP9k was localized to the maternal caruncular epithelium, fetal chorionic epithelium, and trophoblastic binucleated cells of the bovine placenta. Within the maternal epithelium the intensity of staining increases from second trimester pregnancies to term pregnancies, indicating a higher intracellular concentration of CaBP9k in the epithelium at term. Luminal and glandular epithelium of the non-caruncular endometrium also stained positively for CaBP9k in all stages of pregnancy observed. No CaBP9k was identified within the stroma or myometrium of the pregnant cow uterus. The increased level of CaBP9k in the caruncular epithelium during the last trimester is hypothesized to be in response to the rising demand for calcium to aid in the mineralization of the fetal skeleton. CaBP9k may play a role in enhancing calcium transport across the placenta in cattle.  相似文献   

9.
There is great interest in the role of polyunsaturated fatty acids (PUFAs) in promoting (n-6 class) or inhibiting (n-3 class) inflammation. Mammalian cells are devoid of desaturase that converts n-6 to n-3 PUFAs. Consequently, essential n-3 fatty acids must be supplied with the diet. We have studied the effect of endogenously produced n-3 PUFAs on colitis development in fat-1 transgenic mice carrying the Caenorhabditis elegans fat-1 gene encoding n-3 desaturase. Colonic cell lipid profile was measured by capillary gas chromatography in fat-1 and wild-type (WT) littermates fed standard diet supplemented with 10% (w/w) safflower oil rich (76%) in n-6 polyunsaturated linoleic acid (LA). Experimental colitis was induced by administrating 3% dextran sodium sulphate (DSS). Colitis was scored by histopatological analysis. Cyclooxygenase-2 (Cox-2) expression was evaluated by real time polymerase chain reaction. Prostaglandin E2 (PGE2) levels and cytokine production were determined by enzyme and microsphere-based immunoassays, respectively. The n-6/n-3 PUFA ratios in colonic cells of fat-1 mice were markedly lower (9.83±2.62) compared to WT (54.5±9.24, P<.001). Results also showed an attenuation of colonic acute and chronic inflammation in fat-1 mice with significant decreases in PGE2 production (P<.01) and Cox-2 expression (P<.01). High levels of colitis-induced proinflammatory cytokines, interleukin (IL)-18, IL-1α, IL-1β, IL-6, monocytes chemotactic proteins 1, 2 and 3 (MCP 1,2,3), matrix metalloproteinase 9 and tumor necrosis factor α (TNF-α) were down-regulated in DSS acutely and chronically treated fat-1 mice. The expression of fat-1 gene in the colon was associated with endogenous n-3 PUFAs production, decreased Cox-2 expression, increased PGE2 and cytokine production.  相似文献   

10.
Rickets and hyperparathyroidism caused by a defective Vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)(2) vitamin D [1,25-(OH)(2)D(3)] action on calcium homeostasis. We assessed the rate of serum (45)Ca accumulation within 10 min after oral gavage in two strains of VDR-knock out (KO) mice (Leuven and Tokyo KO) and observed a threefold lower area under the curve in both KO-strains. Moreover, we evaluated the expression of intestinal candidate genes, belonging to a new class of calcium channels (TRPV), involved in transcellular calcium transport. The calcium transport protein ECaC2 was more abundantly expressed at mRNA level than ECaC1 in duodenum, but both were considerably reduced (ECaC2 > 90%, ECaC1 > 60%) in the two VDR-KO strains on a normal calcium diet. Calbindin-D(9K) expression was only significantly decreased in the Tokyo KO, whereas PMCA(1b) expression was normal in both VDR-KOs. In Leuven wild type mice, a high calcium diet inhibited (> 90%), and 1,25(OH)(2)D(3) or low calcium diet induced (sixfold) duodenal ECaC2 expression and, to a lesser degree, ECaC1 and calbindin-D(9K) expression. In Leuven KO mice, however, high or low calcium intake decreased calbindin-D(9K) and PMCA(1b) expression, whereas both ECaC mRNA expressions remained consistently low on any diet. These results suggest that the expression of the novel duodenal epithelial calcium channels (in particular ECaC2 or TRPV6) is strongly vitamin D dependent and that calcium influx, probably interacting with calbindin-D(9K), should be considered as a rate-limiting step in the process of vitamin D dependent active calcium absorption.  相似文献   

11.
Summary The distribution of the vitamin-D dependent calcium-binding protein (Calbindin-D 28K) (CaBP-28K) in the tibial growth plate cartilage of the rat has been studied immunohistochemically using an antibody raised against rat renal CaBP-28K. The protein was detected mainly in the nuclei of chondrocytes and occasionally in the juxta-nuclear cytoplasm. The distribution was not uniform throughout the growth plate, but concentrated in the proliferatively active chondrocytes of the resting and proliferative zones. These findings raise the possibility that CaBP-28K may be involved in the mitotic activity of the chondrocytes, acting as a regulator of the proliferative process, perhaps via intranuclear calcium.  相似文献   

12.
Rats maintained on tritiated 1,25-dihydroxyvitamin D3 as their sole source of vitamin D and placed on diets differing in calcium content had similar intestinal levels of tritiated 1,25-dihydroxyvitamin D3. Since 1,25-dihydroxyvitamin D3 administration eliminated adaptation of intestinal calcium transport, it appears that increased production of 1,25-dihydroxyritamin D3 is responsible for the stimulation of calcium transport by low dietary calcium. When maintained on tritiated 1,25-dihydroxyvitamin D3, rats fed a low-phosphorus diet had somewhat higher levels of tritiated 1,25-dihydroxyvitamin D3 in the duodenum and plasma than rats on a normal-phosphorus diet. In addition to stimulating 1,25-dihydroxyvitamin D3 synthesis, low dietary phosphorus may increase the accumulation of 1,25-dihydroxyvitamin D3 in both intestine and plasma.  相似文献   

13.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.  相似文献   

14.
We have crossed ERp57flx/flx mice with commercially available mice expressing villin-driven cre-recombinase. Lysates of intestinal epithelial cells were prepared from knock-out (KO) mice and littermates (LM) and used in Western blot analyses with Ab099 against the N terminus of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor: LM mice exhibited one positive band, which was absent in preparations from KO mice. Saturation analyses of cell lysates with [3H]1,25D3 revealed negligible binding in preparations from either female or male KOs. Lysates from female and male LM mice had similar affinities but different numbers of binding sites. Isolated enterocytes were tested for steroid-stimulated calcium uptake. Treatment of cells from female or male LM mice with 1,25D3 elicited enhanced calcium uptake in females and males within 5 min. Intestinal cells from KO mice exhibited a severely blunted or completely absent response to hormone. Confocal microscopy of intestinal cells revealed the presence of cell surface vitamin D receptors. However, antibodies to the vitamin D receptor failed to block 1,25D3-stimulated calcium uptake. In chick enterocytes we have found that the PKA pathway mediates calcium uptake. The time course for activation of PKA in mouse enterocytes paralleled that for enhanced calcium uptake and for LM females reached 250% of controls within 5 min, and 150% of controls in cells prepared from LM males. Enterocytes from female or male KO mice failed to exhibit steroid hormone-stimulated PKA activity, but did respond to forskolin with enhanced calcium uptake. We conclude that the 1,25D3-MARRS receptor is of central importance to steroid hormone-stimulated calcium uptake in mammalian intestinal cells.  相似文献   

15.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues.  相似文献   

16.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

17.
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.  相似文献   

18.
Ergosterol, episterol, 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol and 24-methylene-24,25-dihydrolanosterol, isolated from Phycomyces blakesleeanus grown in the presence of methionine-[methyl-2H3], each contained two deuterium atoms; lanosterol, however, was unlabelled. The 14C:3H atomic ratio of the following sterols isolated from P. blakesleeanus grown in the presence of mevalonic acid-[2-14C,(4R)-4-3H1], was: ergosterol, 5:3; episterol, 5:4; ergosta-5,7,24(28)-trien-3β-ol, 5:3; 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol, 5:4; 24-methylene-24,25-dihydrolanosterol, 6:5; lanosterol, 6:5. The significance of these results in terms of ergosterol biosynthesis is discussed.  相似文献   

19.
The essential role of vitamin D throughout the life of most mammals and birds as a mediator of calcium homeostasis is well established. In view of the complex endocrine system existent for the regulated metabolism of vitamin D3 to both 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and 24R,25-dihydroxyvitamin D3 [24R,25-(OH)2D3] (both produced by the kidney), an intriguing problem is to elucidate whether only one or both of these dihydroxyvitamin D3 metabolites is required for the generation of all the biological responses mediated by the parent vitamin D3. In contrast to the accumulated knowledge concerning the short term actions of 1,25(OH)2-D3 on stimulating intestinal calcium absorption and bone calcium reabsorption, relatively little is known of the biological function of 24,25(OH)2D3. We report now the results of a nine month study in which chicks were raised on a vitamin D-deficient diet from hatching to sexual maturity and received as their sole source of “vitamin D” either 24,25(OH)2D3 or 1,25(OH)2D3 singly or in combination. Specifically we are describing the integrated operation of the vitamin D endocrine system as quantitated by the individual measurement in all birds of 22 variables related to “vitamin D status” and as evaluated by the statistical procedure of multivariate discriminant analysis. Twelve of these variables involved detailed analysis of the bone including quantitative histology and the other 10 variables reflect various manifestations of vitamin D action, e.g. serum Ca2+ and Pi levels, vitamin D-dependent calcium binding protein (CaBP) in the intestine and kidney, egg productivity etc. As evaluated by the multivariate analysis, it is clear that 24,25(OH)2D3 and 1,25(OH)2D3 are simultaneously required for normalization of calcium homeostasis.  相似文献   

20.
Thyroparathyroidectomy prevents the elevation of intestinal calcium transport in response to low dietary levels of calcium. Removal of the thyroparathyroid glands reduces elevated intestinal calcium transport of rats on low calcium diets to the levels found in rats fed high calcium diets. This reduction took place 4 days after surgery. The chronic administration of a constant exogenous source of parathyroid hormone to thyroparathyroidectomized rats fed either a high or low calcium diet resulted in high rates of intestinal calcium transport independent of dietary calcium. Since 1,25-dihydroxyvitamin D3 supplementation eliminates adaptation in a similar manner, these results strongly support the idea that parathyroid glands mediate intestinal adaptation to low dietary calcium presumably by the stimulation of 1,25-dihydroxyvitamin D3 biosynthesis by secreted parathyroid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号