首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study applied yolk immunoglobulins immunoaffinity separation and MALDI-TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and alpha1-antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high-quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N-glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N-glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG-Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.  相似文献   

2.
3.
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos.  相似文献   

4.
Congenital disorders of glycosylation (CDG) are being recognized as a rapidly growing and complex group of disorders. The pathophysiology results from depressed synthesis or remodeling of oligosaccharide moieties of glycoproteins. The ultimate result is the formation of abnormal glycoproteins affecting their structure and metabolic functions. The most thoroughly studied subset of CDG are the type I defects affecting N-glycosylation. Causal mutations occur in at least 12 different genes which encode primarily monosaccharide transferases necessary for N-glycosylation in the endoplasmic reticulum. The broad clinical presentation of these glycosylation defects challenge clinicians to test for these defects in a variety of clinical settings. The first described CDG was a phosphomannomutase deficiency (CDG-Ia). The original method used to define the glycosylation defect was isoelectric focusing (IEF) of transferrin. More recently, the use of other charge separation methods and electrospray-mass spectrometry (ESI-MS) has proven valuable in detecting type I CDG defects. By mass resolution, the under-glycosylation of transferrin is characterized as the total absence of one or both N-linked oligosaccharide. Beyond providing a new understanding of the structure of transferrin in type I CDG patients, it is adaptable to high throughput serum analysis. The use of transferrin under-glycosylation to detect the type I CDG provides limited insight into the specific site of the defect in oligosaccharide assembly since its value is constrained to observation of the final product of glycoprotein synthesis. New analytical targets and tools are converging with the clinical need for diagnosis of CDG. Defining the biosynthetic sites responsible for specific CDG phenotypes is in progress, and ten more type I defects have been putatively identified. This review discusses current methods, such as IEF and targeted proteomics using mass spectrometry, that are used routinely to test for type I CDG disorders, along with some newer approaches to define the defective synthetic sites responsible for the type I CDG defects. All diagnostic endeavors are followed by the quest for a reliable treatment. The isolated success of CDG-Ib treatment will be described with the hope that this may expand to other type I CDG disorders.  相似文献   

5.
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.  相似文献   

6.
Faid V  Chirat F  Seta N  Foulquier F  Morelle W 《Proteomics》2007,7(11):1800-1813
Glycosylation of proteins is a very complex process which involves numerous factors such as enzymes or transporters. A defect in one of these factors in glycan biosynthetic pathways leads to dramatic disorders named congenital disorders of glycosylation (CDG). CDG can affect the biosynthesis of not only protein N-glycans but also O-glycans. The structural analysis of glycans on serum glycoproteins is essential to solving the defect. For this reason, we propose in this paper a strategy for the simultaneous characterization of both N- and O-glycan chains isolated from the serum glycoproteins. The serum (20 microL) is used for the characterization of N-glycans which are released by enzymatic digestion with PNGase F. O-glycans are chemically released by reductive elimination from whole serum glycoproteins using 10 microL of the serum. Using strategies based on mass spectrometric analysis, the structures of N- and O-glycan chains are defined. These strategies were applied on the sera from one patient with CDG type IIa, and one patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex.  相似文献   

7.
Congenital disorders of glycosylation (CDG) are a group of multisystemic disorders resulting from defects in the synthesis and processing of N-linked oligosaccharides. The most common form, CDG type Ia (CDG-Ia), results from a deficiency of the enzyme phosphomannomutase (PMM). PMM converts mannose 6-phosphate (man-6-P) to mannose-1-phosphate (man-1-P), which is required for the synthesis of GDP-mannose, a substrate for dolichol-linked oligosaccharide synthesis. The traditional assay for PMM, a coupled enzyme system based on the reduction of NADP(+) to NADPH using man-1-P as a substrate, has limitations in accuracy and reproducibility. Therefore, a more sensitive, direct test for PMM activity, based on the detection of the conversion of man-1-P to man-6-P by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), was developed. Using this assay, the activity of PMM was markedly deficient in fibroblasts and lymphoblasts from 23 patients with CDG-Ia (range 0-15.3% of control, average 4.9+/-4.7%) and also decreased in seven obligate heterozygotes (range 33.0-72.0% of control, average 52.2+/-14.7%). Unlike the spectrophotometric method, there was no overlap in PMM activity among patients, obligate heterozygotes, or controls. Thus, the PMM assay based on HPAEC-PAD has increased utility in the clinical setting, and can be used, together with transferrin isoelectric focusing, to diagnose patients with CDG-Ia and to identify heterozygotes when clinically indicated.  相似文献   

8.
Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.  相似文献   

9.
Many human inherited disorders cause protein N-glycosylation defects, but there are few cellular markers to test gene complementation for such defects. Plasma membrane glycoproteins are potential biomarkers because they may be reduced or even absent in plasma membranes of glycosylation-deficient cells. We combined stable isotope labeling by amino acids in cell culture (SILAC) with linear ion trap mass spectrometry (LTQ Orbitrap(TM)) to identify and quantify membrane proteins from wild-type CHO and glycosylation-deficient CHO (Lec9) cells. We identified 165 underrepresented proteins from 1447 unique quantified proteins, including 18 N-glycosylated plasma membrane proteins. Using various methods, we found that intercellular cell adhesion molecule 1 (ICAM-1) was reduced in Lec9 cells and in fibroblasts from 31 congenital disorder of glycosylation (CDG) patients compared with normal controls. Mannose supplementation of phosphomannose isomerase-deficient CDG-Ib (MPI-CDG) cells and complementation with PMM2 in PMM2-deficient CDG-Ia (PMM2-CDG) cells partially corrected hypoglycosylation based on increased ICAM-1 presence on the plasma membrane. These data indicate that ICAM-1 could be a useful hypoglycosylation biomarker to assess gene complementation of CDG-I patient cells and to monitor improved glycosylation in response to therapeutic drugs.  相似文献   

10.
Balancing N-linked glycosylation to avoid disease   总被引:4,自引:0,他引:4  
Freeze HH  Westphal V 《Biochimie》2001,83(8):791-799
Complete loss of N-glycosylation is lethal in both yeast and mammals. Substantial deficiencies in some rate-limiting biosynthetic steps cause human congenital disorders of glycosylation (CDG). Patients have a range of clinical problems including variable degrees of mental retardation, liver dysfunction, and intestinal disorders. Over 60 mutations in phosphomannomutase (encoded by PMM2) diminish activity and cause CDG-Ia. The severe mutation R141H in PMM2 is lethal when homozygous, but heterozygous in about 1/70 Northern Europeans. Another disorder, CDG-Ic, is caused by mutations in ALG6, an alpha 1,3glucosyl transferase used for lipid-linked precursor synthesis, yet some function-compromising mutations occur at a high frequency in this gene also. Maintenance of seemingly deleterious mutations implies a selective advantage or positive heterosis. One possible explanation for this is that production of infective viruses such as hepatitis virus B and C, or others that rely heavily on host N-glycosylation, is substantially inhibited when only a tiny fraction of their coat proteins is misglycosylated. In contrast, this reduced glycosylation does not affect the host. Prevalent functional mutations in rate-limiting glycosylation steps could provide some resistance to viral infections, but the cost of this insurance is CDG. A balanced glycosylation level attempts to accommodate these competing agendas. By assessing the occurrence of a series of N-glycosylation-compromising alleles in multi-genic diseases, it may be possible to determine whether impaired glycosylation is a risk factor or a major determinant underlying their pathology.  相似文献   

11.
Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic   总被引:4,自引:0,他引:4  
Congenital disorders of glycosylation (CDG), formerly known as carbohydrate-deficient glycoprotein syndrome, represent a family of genetic diseases with variable clinical presentations. Common to all types of CDG characterized to date is a defective Asn-linked glycosylation caused by enzymatic defects of N-glycan synthesis. Previously, we have identified a mutation in the ALG6 alpha1,3 glucosyltransferase gene as the cause of CDG-Ic in four related patients. Here, we present the identification of seven additional cases of CDG-Ic among a group of 35 untyped CDG patients. Analysis of lipid-linked oligosaccharides in fibroblasts confirmed the accumulation of dolichyl pyrophosphate-Man9GlcNAc2 in the CDG-Ic patients. The genomic organization of the human ALG6 gene was determined, revealing 14 exons spread over 55 kb. By polymerase chain reaction amplification and sequencing of ALG6 exons, three mutations, in addition to the previously described A333 V substitution, were detected in CDG-Ic patients. The detrimental effect of these mutations on ALG6 activity was confirmed by complementation of alg6 yeast mutants. Haplotype analysis of CDG-Ic patients revealed a founder effect for the ALG6 allele bearing the A333 V mutation. Although more than 80% of CDG are type Ia, CDG-Ic may be the second most common form of the disease.  相似文献   

12.
Phosphomannomutases (PMMs) are crucial for the glycosylation of glycoproteins. In humans, two highly conserved PMMs exist: PMM1 and PMM2. In vitro both enzymes are able to convert mannose-6-phosphate (mannose-6-P) into mannose-1-P, the key starting compound for glycan biosynthesis. However, only mutations causing a deficiency in PMM2 cause hypoglycosylation, leading to the most frequent type of the congenital disorders of glycosylation (CDG): CDG-Ia. PMM1 is as yet not associated with any disease, and its physiological role has remained unclear. We generated a mouse deficient in Pmm1 activity and documented the expression pattern of murine Pmm1 to unravel its biological role. The expression pattern suggested an involvement of Pmm1 in (neural) development and endocrine regulation. Surprisingly, Pmm1 knockout mice were viable, developed normally, and did not reveal any obvious phenotypic alteration up to adulthood. The macroscopic and microscopic anatomy of all major organs, as well as animal behavior, appeared to be normal. Likewise, lectin histochemistry did not demonstrate an altered glycosylation pattern in tissues. It is especially striking that Pmm1, despite an almost complete overlap of its expression with Pmm2, e.g., in the developing brain, is apparently unable to compensate for deficient Pmm2 activity in CDG-Ia patients. Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions.  相似文献   

13.
The congenital disorders of glycosylation (CDG) are characterized by defects in N-linked glycan biosynthesis that result from mutations in genes encoding proteins directly involved in the glycosylation pathway. Here we describe two siblings with a fatal form of CDG caused by a mutation in the gene encoding COG-7, a subunit of the conserved oligomeric Golgi (COG) complex. The mutation impairs integrity of the COG complex and alters Golgi trafficking, resulting in disruption of multiple glycosylation pathways. These cases represent a new type of CDG in which the molecular defect lies in a protein that affects the trafficking and function of the glycosylation machinery.  相似文献   

14.
Carbohydrate-deficient-glycoprotein syndrome type 1 (CDG1; also known as "Jaeken syndrome") is an autosomal recessive disorder characterized by defective glycosylation. Most patients show a deficiency of phosphomannomutase (PMM), the enzyme that converts mannose 6-phosphate to mannose 1-phosphate in the synthesis of GDP-mannose. The disease is linked to chromosome 16p13, and mutations have recently been identified in the PMM2 gene in CDG1 patients with a PMM deficiency (CDG1A). The availability of the genomic sequences of PMM2 allowed us to screen for mutations in 56 CDG1 patients from different geographic origins. By SSCP analysis and by sequencing, we identified 23 different missense mutations and 1 single-base-pair deletion. In total, mutations were found on 99% of the disease chromosomes in CDG1A patients. The R141H substitution is present on 43 of the 112 disease alleles. However, this mutation was never observed in the homozygous state, suggesting that homozygosity for these alterations is incompatible with life. On the other hand, patients were found homozygous for the D65Y and F119L mutations, which must therefore be mild mutations. One particular genotype, R141H/D188G, which is prevalent in Belgium and the Netherlands, is associated with a severe phenotype and a high mortality. Apart from this, there is only a limited relation between the genotype and the clinical phenotype.  相似文献   

15.
Congenital disorders of glycosylation (CDG) constitute a group of diseases affecting N-linked glycosylation pathways. The classical type of CDG, now called CDG-I, results from deficiencies in the early glycosylation pathway for biosynthesis of lipid-linked oligosaccharide and its transfer to proteins in endoplasmic reticulum, while the CDG-II diseases are caused by defects in the subsequent processing steps. Mass spectrometry (MS) produced a milestone in CDG research, by localizing the CDG-I defect to the early glycosylation pathway in 1992. Currently, MS of transferrin, either by electrospray ionization or matrix-assisted laser desorption/ionization, plays the central role in laboratory screening of CDG-I. On the other hand, the glycopeptide analysis recently developed for site-specific glycans of glycoproteins allows detailed glycan analysis in a high throughput manner and will solve problems in CDG-II diagnosis. These techniques will facilitate studying CDG, a field now expanding to O-linked glycosylation and to acquired as well as inherited conditions that can affect protein glycosylation.  相似文献   

16.
Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged β1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure.  相似文献   

17.
Phosphomannomutase (PMM) deficiency causes congenital disorder of glycosylation (CDG)-Ia, a broad spectrum disorder with developmental and neurological abnormalities. PMM converts mannose 6-phosphate (M6P) to mannose-1-phosphate, a precursor of GDP-mannose used to make Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (lipid-linked oligosaccharide; LLO). LLO, in turn, is the donor substrate of oligosaccharyltransferase for protein N-linked glycosylation. Hepatically produced N-linked glycoproteins in CDG-Ia blood are hypoglycosylated. Upon labeling with [(3)H]mannose, CDG-Ia fibroblasts have been widely reported to accumulate [(3)H]LLO intermediates. Since these are thought to be poor oligosaccharyltransferase substrates, LLO intermediate accumulation has been the prevailing explanation for hypoglycosylation in patients. However, this is discordant with sporadic reports of specific glycoproteins (detected with antibodies) from CDG-Ia fibroblasts being fully glycosylated. Here, fluorophore-assisted carbohydrate electrophoresis (FACE, a nonradioactive technique) was used to analyze steady-state LLO compositions in CDG-Ia fibroblasts. FACE revealed that low glucose conditions accounted for previous observations of accumulated [(3)H]LLO intermediates. Additional FACE experiments demonstrated abundant Glc(3)Man(9)GlcNAc(2)-P-P-dolichol, without hypoglycosylation, CDG-Ia fibroblasts grown with physiological glucose. This suggested a "missing link" to explain hypoglycosylation in CDG-Ia patients. Because of the possibility of its accumulation, the effects of M6P on glycosylation were explored in vitro. Surprisingly, M6P was a specific activator for cleavage of Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This led to futile cycling the LLO pathway, exacerbated by GDP-mannose/PMM deficiency. The possibilities that M6P may accumulate in hepatocytes and that M6P-stimulated LLO cleavage may account for both hypoglycosylation and the clinical failure of dietary mannose therapy with CDG-Ia patients are discussed.  相似文献   

18.
Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.  相似文献   

19.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

20.
Congenital disorders of glycosylation: genetic model systems lead the way   总被引:11,自引:0,他引:11  
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells. The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains. In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway. The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号