首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the in vitro biocompatibility of an injectable and biodegradable polymeric network based on poly(propylene fumarate) (PPF) and the cross-linking agent PPF-diacrylate (PPF-DA). Using a methyl tetrazolium (MTT) assay, the effect of the concentrations of PPF and PPF-DA on the cytotoxicity of its unreacted macromers, cross-linked networks, and degradation products was examined. The influence of network structure properties on cell viability and attachment to the cross-linked material was also investigated. The unreacted macromers exhibited a time- and dose-dependent cytotoxic response that increased with more PPF-DA in the mixture. Conversely, the cross-linked networks formed with more PPF-DA did not demonstrate an adverse response because increases in conversion and cross-linking density prevented the extraction of toxic products. Fibroblast attachment was observed on the PPF/PPF-DA networks with the highest double bond conversions. The degradation products, obtained from the complete breakdown of the networks in basic conditions, displayed a dose-dependent cytotoxic response. These results show that there are concerns regarding the biocompatibility of injectable, biodegradable PPF/PPF-DA networks but also sheds light onto potential mechanisms to reduce the cytotoxic effects.  相似文献   

2.
Yeo M  Lee H  Kim G 《Biomacromolecules》2011,12(2):502-510
β-Tricalcium phosphate (β-TCP) and collagen have been widely used to regenerate various hard tissues, but although Bioceramics and collagen have various biological advantages with respect to cellular activity, their usage has been limited due to β-TCP's inherent brittleness and low mechanical properties, along with the low shape-ability of the three-dimensional collagen. To overcome these material deficiencies, we fabricated a new hierarchical scaffold that consisted of a melt-plotted polycaprolactone (PCL)/β-TCP composite and embedded collagen nanofibers. The fabrication process was combined with general melt-plotting methods and electrospinning. To evaluate the capability of this hierarchical scaffold to act as a biomaterial for bone tissue regeneration, physical and biological assessments were performed. Scanning electron microscope (SEM) micrographs of the fabricated scaffolds indicated that the β-TCP particles were uniformly embedded in PCL struts and that electrospun collagen nanofibers (diameter = 160 nm) were well layered between the composite struts. By accommodating the β-TCP and collagen nanofibers, the hierarchical composite scaffolds showed dramatic water-absorption ability (100% increase), increased hydrophilic properties (20%), and good mechanical properties similar to PCL/β-TCP composite. MTT assay and SEM images of cell-seeded scaffolds showed that the initial attachment of osteoblast-like cells (MG63) in the hierarchical scaffold was 2.2 times higher than that on the PCL/β-TCP composite scaffold. Additionally, the proliferation rate of the cells was about two times higher than that of the composite scaffold after 7 days of cell culture. Based on these results, we conclude that the collagen nanofibers and β-TCP particles in the scaffold provide good synergistic effects for cell activity.  相似文献   

3.
Beta-tricalcium phosphate (β-TCP) has been clinically used as a bone graft substitute for decades because of its excellent osteoconductivity. However, the exact mechanism(s) by which β-TCP exerts osteoconductivity are not fully documented. This study was aimed to investigate the molecular mechanism(s) by which β-TCP modulates the biological response of primary human osteoblasts (HOBs). It was showed that HOBs seeded into the β-TCP scaffolds expressed significantly higher levels of osteogenic genes, compared to those cultured on tissue culture plastic; meanwhile these cells showed 7-fold increase in α2 integrin subunit gene expression and the activation of the mitogen-activated protein kinase (MAPK)/extracellular related kinase (ERK) signaling pathway. In addition, the osteogenic conduction by β-TCP scaffolds was attenuated directly by inhibiting MAPK/ERK or indirectly by blocking the α2β1 integrin signaling pathway. We concluded that β-TCP scaffold exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway, suggesting a feasible approach to consider when designing or fabricating the scaffolds for bone tissue engineering.  相似文献   

4.
The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate (β-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus β-TCP or β-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with β-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and β-TCP as an osteoconductive material for periodontal regeneration following severe destruction by progressive periodontitis.  相似文献   

5.
Novel biocomposites were fabricated by impregnating β-tricalcium phosphate (β-TCP)/zirconia particles into the polymers matrix. The composite materials were characterized using thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) analyzes and Scanning Electron Microscopy (SEM). The results confirmed the conversion of hydroxyapatite (HA) to β-TCP at a sintering temperature of 1150 °C with or without zirconia powder. The in vitro behavior was assessed via measurement of calcium and phosphorus ions in SBF (simulated body fluid). FT-IR and SEM of the composites were performed pre and post immersion in SBF. The results prove that the bone like apatite layer formation was enhanced on the β-TCP-Z20/polymeric composite surface more than that on the β-TCP-Z10/polymeric composite. Therefore, the data confirmed that zirconia plays an important role in the enhancement of the apatite formation. The conclusions proved that the β-TCP-Z20/polymeric biocomposites, containing 20% of zirconia, are promising for bone remodeling applications.  相似文献   

6.
A novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF), cross-linked with a thermal radical initiation system has recently been developed in our laboratory as an injectable, biodegradable cell carrier for regeneration of orthopaedic tissues. The cross-linking, swelling, and degradative properties of hydrogels prepared from OPF with poly(ethylene glycol) of two different chain lengths were assessed. The two OPF types had similar gelation onset times ( approximately 3.6 min) but, when cross-linked for 8 min at 37 degrees C, exhibited significantly different swelling characteristics (fold swelling: 17.5 +/- 0.2 vs 13.4 +/- 0.4). Rat marrow stromal cells (MSCs) were then directly combined with the hydrogel precursors and encapsulated in a model OPF formulation at approximately 14 million cells/mL, cultured in vitro in the presence of osteogenic supplements (dexamethasone), and monitored over 28 days via histology. MSC differentiation in these samples (6 mm diameter x 0.5 mm thick before swelling), as determined by Von Kossa staining for calcified matrix, was apparent by day 21. At day 28, mineralized matrix could be seen throughout the samples, many microns away from the cells. These experiments strongly support the usefulness of thermally cross-linked OPF hydrogels as injectable cell carriers for bone regeneration.  相似文献   

7.
Injectable multiphasic polymer/ceramic composites are attractive as bioresorbable scaffolds for bone regeneration because they can be cross-linked in situ and are osteoconductive. The injectability of the composite depends on the nanoparticle content and the energetic interactions at the polymer/particle interface. The objective of this research was to determine experimentally the rheological properties of the PLEOF/apatite composite as an injectable biomaterial and to compare the viscoelastic response with the predictions of a linear elastic dumbbell model. A degradable in situ cross-linkable terpolymer based on low molecular weight poly(L-lactide) and poly(ethylene oxide) linked by unsaturated fumarate groups is synthesized. The poly(L-lactide-co-ethylene oxide-co-fumarate) (PLEOF) terpolymer interacts with the surface of the apatite nanoparticles by polar interactions and hydrogen bonding. A kinetic model is developed that takes into account the adsorption/desorption of polymer chains to/from the nanoparticle surface. Rheological properties of the aqueous dispersion of PLEOF terpolymer reinforced with nanosized hydroxyapatite (HA) particles are investigated using mechanical rheometry. To this end, we performed a series of rheological experiments on un-cross-linked PLEOF reinforced with different volume fractions of HA nanoparticles. The results demonstrate that the observed nonlinear viscoelasticity at higher shear rates is controlled by the energetic interactions between the polymer chains and dispersed particle aggregates and by the rate of the adsorption/desorption of the chains to/from the surface of the nanoparticles.  相似文献   

8.
With the development of minimally invasive surgical techniques, there is a growing interest in the research and development of injectable biomaterials especially for orthopedic applications. In a view to enhance the overall surgery benefits for the patient, the BIOSINJECT project aims at preparing a new generation of mineral-organic composites for bone regeneration exhibiting bioactivity, therapeutic activity and easiness of use to broaden the application domains of the actual bone mineral cements and propose an alternative strategy with regard to their poor resorbability, injectability difficulties and risk of infection. First, a physical-chemical study demonstrated the feasibility of self-setting injectable composites associating calcium carbonate-calcium phosphate cement and polysaccharides (tailor-made or commercial polymer) in the presence or not of an antibacterial agent within the composite formulation. Then, bone cell response and antimicrobial activity of the composite have been evaluated in vitro. Finally, in order to evaluate resorption rate and bone tissue response an animal study has been performed and the histological analysis is still in progress. These multidisciplinary and complementary studies led to promising results in a view of the industrial development of such composite for dental and orthopaedic applications.  相似文献   

9.
Currently, oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels are being investigated as an injectable and biodegradable system for tissue engineering applications. In this study, cytotoxicity of each component of the OPF hydrogel formulation and the resulting cross-linked network was examined. Specifically, OPF synthesized with poly(ethylene glycol) (PEG) of different molecular weights (MW), the cross-linking agent [PEG-diacrylate (PEG-DA)], and the redox initiator pair [ammonium persulfate (APS) and ascorbic acid (AA)] were evaluated for cytotoxicity at 2 and 24 h using marrow stromal cells (MSCs) as model cells. The effect of leachable byproducts of OPF hydrogels on cytotoxicity was also investigated. Upon exposure to various concentrations of OPF for 2 h, greater than 50% of the MSCs were viable, regardless of OPF molecular weight or concentration in the media. After 24 h, the MSCs maintained more than 75% viability except for OPF concentrations higher than 25% (w/v). When examining the cross-linking agent, PEG-DA of higher MW (3400) demonstrated significantly higher viability compared to PEG-DA with MW 575 at all concentrations tested. Considering initiators, when MSCs were exposed to AA and APS, as well as the combination of AA and APS, higher viability was observed at lower concentrations. Once cross-linked, the leachable products from the OPF hydrogels had minimal adverse effects on the viability of MSCs (percentage of live cells was higher than 90% regardless of hydrogel types). The results suggest that, after optimization of cross-linking parameters, OPF-based hydrogels hold promise as novel injectable scaffolds or cell carriers in tissue engineering.  相似文献   

10.
以六亚甲基二异氰酸酯(HDI)为交联剂与β-环糊精(β-CD)聚加成反应,制得的HDI-β-环糊精交联聚合物(β-CD-HDI)用于焦化废水的处理。采用红外光谱(IR)及扫描电子显微镜(SEM)对交联产物进行分析表征,结果发现所得交联物即为目标产物。实验结果表明了废水处理和再生的工艺参数:聚合物用量40 g/L,温度20℃;HDI-β-CD多次使用后可用甲醇浸泡、洗涤进行再生,再生10次吸附率仍然在58.1%以上。  相似文献   

11.
Dextrin, a glucose polymer with low molecular weight, was used to develop a fully resorbable hydrogel, without using chemical initiators. Dextrin was first oxidized (oDex) with sodium periodate and then cross-linked with adipic acid dihidrazide, a nontoxic cross-linking molecule. Furthermore, a new bidimensional composite hydrogel, made of oxidized dextrin incorporating dextrin nanogels (oDex-nanogel), was also developed. The oDex hydrogels showed good mechanical properties and biocompatibility, allowing the proliferation of mouse embryo fibroblasts 3T3 cultured on top of the gel. The gelation time may be controlled selecting the concentrations of the polymer and reticulating agent. Both the oDex and oDex-nanogel hydrogels are biodegradable and present a 3-D network with a continuous porous structure. The obtained hybrid hydrogel enables the release of the dextrin nanogel over an extended period of time, paralleling the mass loss curve due to the degradation of the material. The dextrin nanogel allowed the efficient incorporation of interleukin-10 and insulin in the oDex hydrogel, providing a sophisticated system of controlled release. The new hydrogels present promising properties as an injectable carrier of bioactive molecules. Both proteins and poorly water-soluble low-molecular-weight drugs are efficiently encapsulated in the nanogel, which performs as a controlled release system entrapped in the hydrogel matrix.  相似文献   

12.
磷酸三钙涂层镁合金材料的细胞相容性研究   总被引:1,自引:0,他引:1  
目的:制备磷酸三钙(β-TCP)涂层镁合金材料,评价材料表面的特性及体外的细胞生物适应性。方法 电化学法制备β-TCP涂层镁合金材料(β-TCP-Mg-AI-Zn),观测金属材料表面微观结构特性和能谱分析,小鼠颅骨源成骨细胞与材料直接接触培养,荧光染色观察材料表面细胞生长状况,检测成骨细胞增殖和碱性磷酸酶(ALP)活性。结果 β-TCP涂层Mg-AI-Zn材料表面呈多孔状,材料表面含有镁、钙和磷等元素;成骨细胞与材料直接接触培养24 h及48 h后,材料表面有大量的成骨细胞粘附、伸展、汇合;与Mg-AI-Zn材料比较,β-TCP-Mg-AI-Zn材料明显地促进细胞增殖、显著地增加成骨细胞中ALP活性 (P<0.05)。结论 β-TCP涂层改善了Mg-AI-Zn镁合金材料表面特性及体外的细胞相容性,有望成为新一代可降解医用金属材料。  相似文献   

13.
Bone morphogenetic proteins (BMPs) that have the potential to elicit new bone in vivo have been used in a tissue-engineering approach for the repair of bone injuries and bone defects. Although it is now possible to generate large amounts of recombinant human (rh) BMPs for medical use, the major challenge remains in the development of optimal local delivery systems for these proteins. Here we describe the development of a synthetic biodegradable polymer, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block copolymer (PLA-DX-PEG). This polymer exhibits promising degradation characteristics for BMP delivery systems and good biocompatibility under test conditions. PLA-DX-PEG/rhBMP-2 composite implants induced ectopic new bone formation effectively when tested in vivo, and can repair large bone defects orthotopically. This polymeric delivery system represents an advance in the technology for the enhancement of bone repair.  相似文献   

14.
Biphasic calcium phosphate (BCP) bioceramics, the mixture of hydroxyapatite (HA) and beta- tricalcium phosphate (β-TCP), are widely used as bone repair materials. Optimization of its composition and mixing pattern is crucial for its design and preparation. A series of BCP structures with a HA/β-TCP mass ratio of 0/100, 30/70, 50/50, 70/30, and 100/0 were constructed and studied with a simulated annealing molecular dynamics method. On the basis of equilibrated BCP structures, their elastic constants and moduli were computed and analyzed. With increasing HA content, the elastic moduli of BCP increase. Under the same mass ratio (50/50), the elastic moduli have no distinct changes for different mixing patterns. Calculations on the uniaxial extension of BCP reveal a sophisticated nonlinear and loading-path dependent behavior. The maximum stress decreases with increasing β-TCP content and mixing level.  相似文献   

15.
We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical and mechanical properties of cross-linked nanocomposites. F-SWNTs were produced from individual SWNTs by a diazonium-based method and dispersed better than unmodified SWNTs in both un-cross-linked and cross-linked PPF matrix. Cross-linked nanocomposites with F-SWNTs were superior to those with unmodified SWNTs in terms of their mechanical properties. Specifically, nanocomposites with 0.1 wt % F-SWNTs loading resulted in a 3-fold increase in both compressive modulus and flexural modulus and a 2-fold increase in both compressive offset yield strength and flexural strength when compared to pure PPF networks, whereas the use of 0.1 wt % SWNTs gained less than 37% mechanical reinforcement. These extraordinary mechanical enhancements considered together with Raman scattering and sol fraction measurements indicate strong SWNT-PPF interactions and increased cross-linking densities resulting in effective load transfer. With enhanced mechanical properties and capabilities of in situ injection and cross-linking, these SWNT/polymer nanocomposites hold significant implications for the fabrication of bone tissue engineering scaffolds.  相似文献   

16.
17.

Objectives

To design and fabricate a 3D-printed cervical cage composite of polylactic acid (PLA)/nano-sized and β-tricalcium phosphate (β-TCP).

Results

CAD analysis provided a useful platform to design the preliminary cage. In vitro cell culture and in vivo animal results showed promising results in the biocompatibility of the constructs. Endplate matching evaluation showed better matching degree of 3D-printed cages than those of conventional cages. Biomechanical evaluation showed better mechanical properties of 3D-printed cages than those of conventional cages.

Conclusion

The novel 3D printed PLA/pβ-TCP cage showed good application potential, indicating a novel, feasible, and inexpensive method to manufacture cervical fusion cages.
  相似文献   

18.
Reggiani M  Taddei P  Tinti A  Fagnano C 《Biopolymers》2004,74(1-2):146-150
The enzymatic in vitro degradation of a commercial biodegradable hydroxyapatite (HA)-polymer (poly(epsilon-caprolactone)-poly(oxyethylene)(POE)-poly(epsilon-caprolactone) block copolymer) composite membrane was investigated by Raman and IR spectroscopies in two enzymatic solutions at 37 degrees C: esterase and alpha-chymotrypsin in saline phosphate buffer (SPB, pH 7.4). The degradation was found to be faster in the enzymatic medium than in SPB and alkaline solutions. The fastest degradation rate was observed in esterase solution. The trend of properly chosen Raman and IR intensity ratios was evaluated to go deeper inside the degradation mechanism: both polymeric and apatitic components were found to be involved in degradation. The former underwent preferential degradation of POE blocks, while HA is removed by the degradation medium faster than the polymer. Vibrational spectroscopy proved a valid tool for investigating the degradation of the membrane.  相似文献   

19.
Due to their low cytotoxicity, controllable size, and unique architecture, cyclodextrin (CD)-based polyrotaxanes and polypseudorotaxanes have inspired interesting exploitation as novel biomaterials. This review will update the recent progress in the studies on the structures of polyrotaxanes and polypseudorotaxanes based on different CDs and polymers, followed by summarizing their potential applications in life science and biotechnology, such as drug delivery, gene delivery, and tissue engineering. CD-based biodegradable polypseudorotaxane hydrogels could be used as promising injectable drug delivery systems for sustained and controlled drug release. Polyrotaxanes with drug or ligand-conjugated CDs threaded on polymer chain with biodegradable end group could be useful for controlled and multivalent targeting delivery. Cationic polyrotaxanes consisting of multiple oligoethylenimine-grafted CDs threaded on a block copolymer chain were attractive non-viral gene carries due to the strong DNA-binding ability, low cytotoxicity, and high gene transfection efficiency. Cytocleavable end caps were also introduced in the polyrotaxane systems in order to ensure efficient endosomal escape for intracellular trafficking of DNA. Finally, hydrolyzable polyrotaxane hydrogels with cross-linked α-CDs could be a desirable scaffold for cartilage and bone tissue engineering.  相似文献   

20.
We have developed a biodegradable composite scaffold for bone tissue engineering applications with a pore size and interconnecting macroporosity similar to those of human trabecular bone. The scaffold is fabricated by a process of particle leaching and phase inversion from poly(lactideco-glycolide) (PLGA) and two calcium phosphate (CaP) phases both of which are resorbable by osteoclasts; the first a particulate within the polymer structure and the second a thin ubiquitous coating. The 3-5 μm thick osteoconductive surface CaP abrogates the putative foreign body giant cell response to the underlying polymer, while the internal CaP phase provides dimensional stability in an otherwise highly compliant structure. The scaffold may be used as a biomaterial alone, as a carrier for cells or a three-phase drug delivery device. Due to the highly interconnected macroporosity ranging from 81% to 91%, with macropores of 0.8~1.8 mm, and an ability to wick up blood, the scaffold acts as both a clot-retention device and an osteoconductive support for host bone growth. As a cell delivery vehicle, the scaffold can be first seeded with human mesenchymal cells which can then contribute to bone formation in orthotopic implantation sites, as we show in immune-compromised animal hosts. We have also employed this scaffold in both lithomorph and particulate forms in human patients to maintain alveolar bone height following tooth extraction, and augment alveolar bone height through standard sinus lift approaches. We provide a clinical case report of both of these applications; and we show that the scaffold served to regenerate sufficient bone tissue in the wound site to provide a sound foundation for dental implant placement. At the time of writing, such implants have been in occlusal function for periods of up to 3 years in sites regenerated through the use of the scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号