首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In Saccharomyces cerevisiae, ribosomal protein L7, one of the ∼46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between Rpl7a and Rpl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its sub-cellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knock-out mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.  相似文献   

2.
3.
4.
5.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

6.
7.
Summary Two PstI fragments (5.3x106 and 4.3x106 daltons) coding for Anacystis nidulans rRNA genes were cloned. The cloned rDNAs were characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis and the R-loop technique. The results indicated that both fragments contained 16S, 23S and 5S rRNA genes in this order. A tRNA gene(s) was detected in the spacer region between 16S and 23S rRNA genes. The organization of A. nidulans rRNA genes resembles those of E. coli and of Euglena chloroplasts rather than those of higher plant chloroplasts.  相似文献   

8.
9.
Yeast Rcl1 is a potential endonuclease that mediates pre-RNA cleavage at the A2-site to separate 18S rRNA from 5.8S and 25S rRNAs. However, the biological function of Rcl1 in opisthokonta is poorly defined. Moreover, there is no information regarding the exact positions of 18S pre-rRNA processing in zebrafish. Here, we report that zebrafish pre-rRNA harbours three major cleavage sites in the 5′ETS, namely –477nt (A′-site), –97nt (A0-site) and the 5′ETS and 18S rRNA link (A1-site), as well as two major cleavage regions within the ITS1, namely 208–218nt (site 2) and 20–33nt (site E). We also demonstrate that depletion of zebrafish Rcl1 mainly impairs cleavage at the A1-site. Phenotypically, rcl1–/– mutants exhibit a small liver and exocrine pancreas and die before 15 days post-fertilization. RNA-seq analysis revealed that the most significant event in rcl1–/– mutants is the up-regulated expression of a cohort of genes related to ribosome biogenesis and tRNA production. Our data demonstrate that Rcl1 is essential for 18S rRNA maturation at the A1-site and for digestive organogenesis in zebrafish. Rcl1 deficiency, similar to deficiencies in other ribosome biogenesis factors, might trigger a common mechanism to upregulate the expression of genes responsible for ribosome biogenesis.  相似文献   

10.
11.
Halopiger goleamassiliensis strain IIH3T sp. nov. is a novel, extremely halophilic archaeon within the genus Halopiger. This strain was isolated from an evaporitic sediment in El Golea Lake, Ghardaïa region (Algeria). The type strain is strain IIH3T. H. goleamassiliensis is moderately thermophilic, neutrophilic, non-motile and coccus-shaped. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,906,923 bp long genome contains 3,854 protein-encoding genes and 49 RNA genes (1 gene is 16S rRNA, 1 gene is 23S rRNA, 3 genes are 5S rRNA, and 44 are tRNA genes).  相似文献   

12.
13.
14.
15.
Ribosome-associated complex (RAC) consists of the Hsp40 homolog Zuo1 and the Hsp70 homolog Ssz1. The chaperone participates in the biogenesis of newly synthesized polypeptides. Here we have identified yeast Rpl31, a component of the large ribosomal subunit, as a contact point of RAC at the polypeptide tunnel exit. Rpl31 is encoded by RPL31a and RPL31b, two closely related genes. Δrpl31aΔrpl31b displayed slow growth and sensitivity to low as well as high temperatures. In addition, Δrpl31aΔrpl31b was highly sensitive toward aminoglycoside antibiotics and suffered from defects in translational fidelity. With the exception of sensitivity at elevated temperature, the phenotype resembled yeast strains lacking one of the RAC subunits or Rpl39, another protein localized at the tunnel exit. Defects of Δrpl31aΔrpl31bΔzuo1 did not exceed that of Δrpl31aΔrpl31b or Δzuo1. However, the combined deletion of RPL31a, RPL31b, and RPL39 was lethal. Moreover, RPL39 was a multicopy suppressor, whereas overexpression of RAC failed to rescue growth defects of Δrpl31aΔrpl31b. The findings are consistent with a model in that Rpl31 and Rpl39 independently affect a common ribosome function, whereas Rpl31 and RAC are functionally interdependent. Rpl31, while not essential for binding of RAC to the ribosome, might be involved in proper function of the chaperone complex.  相似文献   

16.
17.
18.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

19.
Ribosomes of different species share an evolutionarily conserved core, exhibiting flexible shells formed partially by the addition of species-specific ribosomal RNAs (rRNAs) with largely unexplored functions. In this study, we showed that by swapping the Saccharomyces cerevisiae 25S rRNA genes with non-S. cerevisiae homologs, species-specific rRNA variations caused moderate to severe pre-rRNA processing defects. Specifically, rRNA substitution by the Candida albicans caused severe growth defects and deficient pre-rRNA processing. We observed that such defects could be attributed primarily to variations in expansion segment 7L (ES7L) and could be restored by an assembly factor Noc2p mutant (Noc2p-K384R). We showed that swapping ES7L attenuated the incorporation of Noc2p and other proteins (Erb1p, Rrp1p, Rpl6p and Rpl7p) into pre-ribosomes, and this effect could be compensated for by Noc2p-K384R. Furthermore, replacement of Noc2p with ortholog from C. albicans could also enhance the incorporation of Noc2p and the above proteins into pre-ribosomes and consequently restore normal growth. Taken together, our findings help to elucidate the roles played by the species-specific rRNA variations in ribosomal biogenesis and further provide evidence that coevolution of rRNA expansion segments and cognate assembly factors specialized the ribosome biogenesis pathway, providing further insights into the function and evolution of ribosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号