首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Chromatin participates actively in all DNA transactions and all phenomena directly under the influence of chromatin are explained by epigenetic mechanisms. The genes transcribed by RNA polymerase (pol) III are generally found in regions free of nucleosomes, the structural units of chromatin. Yet, histone modifications and positions of nucleosomes in the gene flanking regions have been reported to show direct correlation with activity status of these genes. Gene-specific as well as genome-wide studies have also revealed association of several epigenetic components with pol III-transcribed genes. This review presents a summary of the research in past many years, which have gathered enough evidence to conclude that pol III-transcribed genes are important components of an epigenome.  相似文献   

8.
9.
10.
《Molecular cell》2023,83(15):2641-2652.e7
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   

14.
15.
16.
The temperature-sensitive DNA polymerase III (Pol III) encoded by the dnaE486 allele confers a spontaneous mutator activity in SOS-induced bacteria that is largely dependent upon DNA polymerase V (Pol V), encoded by umuD, C. This mutator activity is influenced by the defective proof-reading sub-unit of Pol III encoded by the dnaQ905 (mutD5) allele arguing that Pol V is most likely fixing mutations arising from mismatched primer termini produced by Pol III(486). The size of the dnaQ effect is, however, modest leaving open the possibility that Pol V may be responsible for some of the mutator effect by engaging in bursts of processive activity.  相似文献   

17.
18.
Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号