首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated the effects of silicon (Si) application on rice plants (Oryza sativa L.) and its responses in the regulation of jasmonic acid (JA) during wounding stress. Endogenous JA was significantly higher in wounded rice plants than in non-wounded. In contrast, Si treatment significantly reduced JA synthesis as compared to non-Si applications under wounding stress. mRNA expression of O. sativa genes showed down-regulation of lipoxygenase, allene oxide synthase 1, allene oxide synthase 2, 12-oxophytodienoate reductase 3, and allene oxide cyclase upon Si application and wounding stress as compared to non-Si-treated wounded rice plants. The physical injury-induced-oxidative stress was modulated by Si treatments, which resulted in higher catalase, peroxidase, and polyphenol oxidase activities as compared with non-Si-treated plants under wounding stress. The higher Si accumulation in rice plants also reduced the level of lipid peroxidation, which helped the rice plants to protect it from wounding stress. In conclusion, Si accumulation in rice plants mitigated the adverse effects of wounding through regulation of antioxidants and JA.  相似文献   

4.
5.
6.
Many plant mltogen-actlvated protein klnases (MAPKs) play an important role In regulating responses to both ablotlc and biotic stresses. The first reported rice MAPK gene BWMK1 Is Induced by both rice blast (Magnaporthe grisea) Infection and mechanical wounding. For further analysis of Its response to other environmental cues and plant hormones, such as jasmonlc acid (JA), salicylic acid (SA), and benzothladlazole (BTH), the promoter of BWMKf was fused with the coding region of the β-glucuronldase (GUS) reporter gene. Two promoter-GUS constructs with a 1.0- and 2.5-kb promoter fragment, respectively, were generated and transformed into the Japonica rice cultIvars TP309 and Zhonghua 11. Expression of GUS was Induced in the transgenic lines by cold, drought, dark, and JA. However, light, SA, and BTH treatments suppressed GUS expression. These results demonstrate that BWMK1 Is responsive to multiple ablotlc stresses and plant hormones and may play a role In cross-talk between different signaling pathways.  相似文献   

7.
Tuberonic acid (12-hydroxy epi-jasmonic acid, TA) and its glucoside (TAG) were isolated from potato leaflets (Solanumtuberosum L.) and shown to have tuber-inducing properties. The metabolism of jasmonic acid (JA) to TAG in plant leaflets, and translocation of the resulting TAG to the distal parts, was demonstrated in a previous study. It is thought that TAG generated from JA transmits a signal from the damaged parts to the undamaged parts by this mechanism. In this report, the metabolism of TA in higher plants was demonstrated using [12-3H]TA, and a glucosyltransferase active toward TA was purified from the rice cell cultures. The purified protein was shown to be a putative salicylic acid (SA) glucosyltransferase (OsSGT) by MALDI-TOF-MS analysis. Recombinant OsSGT obtained by overexpression in Escherichia coli was active not only toward TA but also toward SA. The OsSGT characterized in this research was not specific, but this is the first report of a glucosyltransferase active toward TA. mRNA expressional analysis of OsSGT and quantification of TA, TAG, SA and SAG after mechanical wounding indicated that OsSGT is involved in the wounding response. These results demonstrated a crucial role for TAG not only in potato tuber formation, but also in the stress response in plants and that the SA glucosyltransferase can work for TA glucosylation.  相似文献   

8.
9.
10.

Key message

Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling.

Abstract

Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC–ESI(?)–MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.  相似文献   

11.
Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OSSe and OSMs) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OSSe had enhanced glucose oxidase activity (but not β-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OSMs-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OSMs-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA.  相似文献   

12.
Plants growing in the field are subjected to multiple stress factors acting simultaneously. Abnormally high temperatures are expected to affect wild plants and crops in the next years due to global warming. In this work, we have studied physiological, hormonal and molecular responses of the citrus rootstock, Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) subjected to wounding or high salinity occurring individually or in combination with heat stress. According to our results, combination of high salinity and heat stress aggravated the negative effects of salt intoxication in Carrizo. The high transpiration rate caused by high temperatures counteracted physiological responses of plants to salt stress and increased Cl? intake in leaves. In addition, 12‐oxo‐phytodienoic acid accumulated specifically under combination of wounding and heat stress, whereas at low temperatures, wounded plants accumulated jasmonic acid (JA) and JA‐isoleucine (JA‐Ile). Moreover, an antagonism between salicylic acid (SA) and JA was observed, and wounded plants subjected to high temperatures did not accumulate JA nor JA‐Ile whereas SA levels increased (via isochorismate synthase biosynthetic pathway). Wounded plants did not accumulate abscisic acid (ABA) but its catabolite phaseic acid. This could act as a signal for the upregulation of (ABA)‐RESPONSIVE ELEMENT (ABRE)‐BINDING TRANSCRIPTION FACTOR 2 (CsAREB2) and RESPONSIVE TO DISSECATION 22 (CsRD22) in an ABA‐independent way. This work uncovers some mechanisms that explain Carrizo citrange tolerance to high temperatures together with different hormonal signals in response to specific stresses. It is suggested that co‐occurring abiotic stress conditions can modify (either enhance or reduce) the hormonal response to modulate specific responses.  相似文献   

13.
Nitric oxide (NO) has been associated with plant defense responses during microbial attack, and with induction and/or regulation of programmed cell death. Here, we addressed whether NO participates in wound responses in Arabidopsis thaliana (L.) Heynh.. Real-time imaging by confocal laser-scanning microscopy in conjunction with the NO-selective fluorescence indicator 4,5-diaminofluorescein diacetate (DAF-2 DA) uncovered a strong NO burst after wounding or after treatment with JA. The NO burst was triggered within minutes, reminiscent of the oxidative burst during hypersensitive responses. Furthermore, we were able to detect NO in plants (here induced by wounding) by means of electron paramagnetic resonance measurements using diethyldithiocarbamate as a spin trap. When plants were treated with NO, Northern analyses revealed that NO strongly induces key enzymes of jasmonic acid (JA) biosynthesis such as allene oxide synthase (AOS) and lipoxygenase (LOX2). On the other hand, wound-induced AOS gene expression was independent of NO. Furthermore, JA-responsive genes such as defensin (PDF1.2) were not induced, and NO induction of JA-biosynthesis enzymes did not result in elevated levels of JA. However, treatment with NO resulted in accumulation of salicylic acid (SA). In transgenic NahG plants (impaired in SA accumulation and/or signaling), NO did induce JA production and expression of JA-responsive genes. Altogether, the presented data demonstrate that wounding in Arabidopsis induces a fast accumulation of NO, and that NO may be involved in JA-associated defense responses and adjustments.Abbreviations AOS Allene oxide synthase - cPTIO Carboxy-2-phenyl-4,4,5,5-tetramethylimidazolinone-3-oxide-1-oxyl - DAF-2 DA 4,5-Diaminofluorescein diacetate - DETC Diethyldithiocarbamate - EPR Electron paramagnetic resonance - iNOS Inducible nitric oxide synthase - JA Jasmonic acid - JIP Jasmonic acid-induced protein - LOX2 Lipoxygenase 2 - NO Nitric oxide - OPR3 12-Oxophytodienoate reductase - PDF1.2 Plant defensin - ROS Reactive oxygen species - SA Salicylic acid - SNP Sodium nitroprusside  相似文献   

14.
15.
NPR1 (a non‐expressor of pathogenesis‐related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore‐induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as‐npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI‐LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as‐npr1 plants increased the levels of herbivore‐induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore‐induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.  相似文献   

16.
17.
Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2, light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1, myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stomatal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues in Arabidopsis and Solanum lycopersicum (tomato).  相似文献   

18.
Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.  相似文献   

19.
The allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA) overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E)-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo). The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.  相似文献   

20.
In agro-ecosystems,plants are important mediators of interactions between their associated herbivorous insects and microbes,and any change in plants induced by one species may lead to cascading effects on interactions with other species.Often,such effects are regulated by phytohormones such as jasmonic acid(JA)and salicylic acid(SA).Here,we investigated the tripartite interactions among rice plants,three insect herbivores(Chilo suppressalis,Cnaphalocrocis medinalis or Nilapai-vata lugens),and the causal agent of rice blast disease,the fungus Magnaporthe oryzae.We found that pre-infestation of rice by C.suppressalis or N.lugens but not by C.medinalis conferred resistance to M.oryzae.For C.suppressalis and N.lugens,insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves.In contrast,infestation by C.medinalis increased JA levels but reduced SA levels.The exogenous application of SA but not of JA conferred resistance against M.oryzae.These results suggest that preinfestation by C suppressalis or N.lugens conferred resistance against M.oryzae by increasing SA accumulation.These findings enhance our understanding of the interactions among rice plant,insects and pathogens,and provide valuable information for developing an ecologically sound strategy for controlling rice blast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号