共查询到20条相似文献,搜索用时 15 毫秒
1.
Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo. 相似文献
2.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction. 相似文献
3.
ObjectiveTo study the putative effects of Advanced Oxidation Protein Products (AOPPs) and Advanced Glycation End Products (AGEs) in the development and progression of cardiovascular disease (CVD).MethodologyAGEs, AOPPs, e-NOS, lipid profile, circulating stress and inflammatory biomarkers were evaluated among fifty cardiovascular patients and fifty controls. Independent student’s t-test was done for statistical analysis.ResultsThe malondialdehyde mean level in CVD patients (5.45?nmol/ml) was significantly higher than control (1.36?nmol/ml) (p value?=?0.018). Nitric oxide in CVD patients (55.72?ng/ml) was remarkably increased as compared to normal subjects (19.19?ng/ml). A significant change in the mean serum level of AGEs in CVD patients (2.74?ng/ml) and normal individuals (0.85?ng/ml) was recorded (p value?=?0.000). The AOPPs also showed significant increased levels in CVD group (132.07?ng/ml) in comparison with normal subjects (83.05?ng/ml) (p value?=?0.011). The mean eNOS serum level in CVD group (15.50?U/L) was higher than control group (11.28?U/L) (p value?=?0.004). Cardiovascular disease patients, in comparison with healthy controls, showed increased level of total cholesterol (5.48?mmol/L vs 4.45?mmol/L), triglycerides (2.59?mmol/L vs 1.24?mmol/L), and low density lipoprotein (2.47?mmol/L vs 2.31?mmol/L) along with decrease in high density lipoprotein (1.39?mmol/L vs 1.74?mmol/L). The mean MMP-11 serum levels in CVD group (98.69?ng/ml) was almost double of control group (45.60?ng/ml) (p value?=?0.017). The mean serum level of TNF-α and IL1-α were 32.16?pg/ml and 6.64?pg/ml in CVD patient. The significant decreasing trend of SOD (p value?=?0.041), CAT (p value?=?0.018), GSH (p value?=?0.036) and GRx (p value?=?0.029) but increasing drift of GPx (0.023) level was observed in CVD patients.ConclusionThis study provides strong evidence that CVD patients presented with elevated oxidative stress, enhanced inflammation and lipid profile in their serum. Therefore, the study strongly approves that AGEs, AOPPs, inflammatory and lipoxidative biomarkers hold predictive potential in causing and aggravating the disease, thus by controlling these factors CVD progression can be inhibited. 相似文献
4.
Recent studies demonstrated the beneficial role of atorvastatin in reducing the risk of cardiovascular morbidity and mortality in patients with diabetes mellitus and/or metabolic syndrome. To investigate the mechanisms underlying the anti-atheroscleroic action of atorvastatin, we examined the expression of the receptor for advanced glycation end products (RAGE) and its downstream target gene, monocyte chemoattractant protein-1 (MCP-1) using real-time PCR. In in vitro studies, exposure to high glucose or AGE induced oxidative stress and activation of the AGE/RAGE system in human umbilical vein endothelial cells. Treatment of the cells with atorvastatin significantly released the oxidative stress by restoring the levels of glutathione and inhibited the RAGE upregulation. In diabetic Goto Kakisaki (GK) rats fed with a high-fat diet for 12 weeks, RAGE and MCP-1 were upregulated in the aortas, and there was a significant correlation between RAGE and MCP-1 mRNA abundance ( r = 0.482, P = 0.031). Treatment with atorvastatin (20 mg/kg qd) significantly downregulated the expression of RAGE and MCP-1. These data thus demonstrate a novel “pleiotropic” activity of atorvastatin in reducing the risk of cardiovascular diseases by targeting RAGE expression. 相似文献
5.
Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE. 相似文献
6.
本文探讨了晚期糖化终产物(advanrced glycation end products,AGEs)修饰蛋白对内皮细胞通透性及细胞骨架肌动蛋白的形态学影响,以及特异的AGEs受体(receptors for AGEs,RAGE)、氧化应激和p38 MAPK通路在此病理过程中的作用。用不同浓度的AGEs修饰人血清白蛋白(AGE-HSA)与人脐静脉内皮细胞株ECV304在体外共同培养不同时间,并设立对照组进行比较,采用TRITC荧光标记白蛋白漏出法测定单层内皮细胞的通透系数Pa值,荧光染色法示细胞骨架的形态学改变。与对照组相比,AGE-HSA以时间和剂量依赖的方式引起单层内皮细胞通透性的升高及细胞骨架肌动蛋白F-actin形态的改变;可溶性RAGE的抗体(anti-RAGE IgG)、NADPH氧化酶抑制剂(apocynin)及p38抑制剂SB203580均可减轻AGEs对内皮细胞屏障功能和形态的影响。结果提示,AGEs修饰蛋白对单层内皮细胞通透性及骨架重排的作用可能通过与内皮细胞上的RAGE结合,引起细胞内的氧化应激,并激活p38 MAPK通路所介导。 相似文献
7.
In Diabetes Mellitus (DM), glucose and the aldehydes glyoxal and methylglyoxal modify free amino groups of lysine and arginine
of proteins forming advanced glycation end products (AGEs). Elevated levels of these AGEs are implicated in diabetic complications
including nephropathy. Our objective was to measure carboxymethyl cysteine (CMC) and carboxyethyl cysteine (CEC), AGEs formed
by modification of free cysteine sulfhydryl groups of proteins by these aldehydes, in plasma proteins of patients with diabetes,
and investigate their association with the albumin creatinine ratio (ACR, urine albumin (mg)/creatinine (mmol)), an indicator
of nephropathy. Blood was collected from forty-two patients with type 1 and 2 diabetes (18–36 years) and eighteen individuals
without diabetes (17–35 years). A liquid chromatography-mass spectrophotometric method was developed to measure plasma protein
CMC and CEC levels. Values for ACR and hemoglobin A1C (HbA1C) were obtained. Mean plasma CMC (μg/l) and CEC (μg/l) were significantly
higher in DM (55.73 ± 29.43, 521.47 ± 239.13, respectively) compared to controls (24.25 ± 10.26, 262.85 ± 132.02, respectively).
In patients with diabetes CMC and CEC were positively correlated with ACR, as was HbA1C. Further, CMC or CEC in combination
with HbA1C were better predictors of nephropathy than any one of these variables alone. These results suggest that glucose,
glyoxal, and methylglyoxal may all be involved in the etiology of diabetic nephropathy. 相似文献
8.
Nonenzymatic glycation, the reaction of glucose and other reducing sugars with protein, reversibly produces Amadori products and over a long period irreversible advanced glycation end products. In diabetes, these reactions are greatly accelerated and are important in the pathogenesis of diabetic complications. In vitro glycation was studied with bovine albumin as the model protein. A mixture of 25 mM glucose/fructose was used as the glycating agent. The Amadori product was quantitated by thiobarbituric acid colorimetry after hydrolysis. Advanced glycation end products were measured by their intrinsic fluorescence. A number of vitamins and nutrients were found to be potent inhibitors of both the glycation reaction and the subsequent end products. The nutrients were effective at physiological concentrations and exhibited dose-response relationships. The inhibitors included ascorbic acid, tocopherol, pyridoxal, niacinamide, sodium selenite, selenium yeast, and carnosine. A significant correlation was found between the inhibition of glycation and the inhibition of AGE formation (P < 0.001). One of the nutrients, ascorbic acid, was used in a pilot study. Eighteen normal subjects, 7 college age and 10 middle age, were supplemented with 1,000 mg of ascorbic acid in the form of Re-Natured Vitamin C® for a period of 4 weeks. Serum protein glycation was decreased an average of 46.8% (P < 0.01). These results underline the importance of nutrition in diabetes and indicate the possibility of therapeutic use of these nutrients for the prevention of diabetic complications. 相似文献
10.
血管内皮生长因子(Vacularendothelial growth factor,VEGF)-血管内皮生长因子受体-2(VEGF receptor2,VEGFR-2)信号轴调控血管生成反应。糖尿病病理状态下,氧化应激异常激活、NO等血管活性物质功能受损、以及晚期糖基化终末产物增加,该信号轴功能失调,使得血管生成反应在一些器官组织中呈增强状态,如视网膜和肾;然而在另一些组织中却是受到抑制,如外周血管等。不正常的血管生成反应最终导致糖尿病性心血管并发症的发生。因此,阐明血管生产反应功能障碍,将为糖尿病心血管并发症靶向治疗提供依据。 相似文献
11.
We investigated the effects of advanced glycation end products (AGEs) derived from glucose, glyceraldehyde, and glycolaldehyde (designated as AGE-1, -2, and -3, respectively) on the viability, replication rate, and cytokine production of cultured Schwann cells. AGE-2 and -3, but not AGE-1, induced apoptosis, and significantly decreased the viability measured by MTT assay. The decrease was prevented completely by antioxidant alpha-lipoic acid and was prevented partially by p38 mitogen-activated protein kinase inhibitor SB202190. The decrease in mitochondrial membrane potential by AGE-2 and -3 was also observed. In addition, AGE-2 and -3 significantly suppressed the replication rate as shown by reduced bromodeoxyuridine uptake, whereas they enhanced the release of TNF-alpha and IL-1beta into the medium and activated nuclear factor-kappaB. The effects of AGE-1 on these measures were equivocal. The series of events elicited by AGE-2 and -3 may be responsible for some of the aspects of pathogenetic mechanisms in patients with diabetic neuropathy. 相似文献
12.
Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age‐related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age‐related endothelial function, we employed rats systemically overexpressing glyoxalase I ( GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid‐age (53 weeks old) wild‐type, and GLO1 transgenic (WT/ GLO1 Tg) rats. Age‐related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8‐hydroxydeoxyguanosine (8‐OHdG) levels. Age‐related impairment of endothelium‐dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium‐independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid‐age WT rats, but not in mid‐age GLO1 Tg rats. Age‐related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age‐related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long‐term impact of endothelial dysfunction on vascular aging. 相似文献
13.
S100A13 is involved in several key biological functions like angiogenesis, tumor formation and cell apoptosis. It is a homodimeric protein that belongs to the S100 protein family. S100A13 is co-expressed with acidic fibroblast growth factor (FGF1) and interleukin-1α which are key angiogenesis inducers. The S100 proteins have been shown to be involved in several cellular functions such as calcium homeostasis, cell growth and differentiation dynamic of cytoskeleton. Its biological functions are mainly mediated through the receptor for advanced glycation end products (RAGE) signaling. RAGE is involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling upon binding of different ligands, such as S100 proteins, glycated proteins, and HMGB1. RAGE signaling is complex, and it depends on the cell type and concentration of the ligand. Molecular level interactions of RAGE and S100 proteins are useful to understand the RAGE signaling diversity. In this report we focus on the molecular level interactions of S100A13 and RAGE C2 domain. The binding between RAGE C2 and S100A13 is moderately strong ( Kd ~ 1.3 μM). We have solved the solution structure of the S100A13–RAGE C2 complex and pronounce the interface regions in S100A13–RAGE C2 complex which are helpful for drug development of RAGE induced diseases. 相似文献
15.
目的:本实验探讨缬沙坦对糖基化终产物诱导的人肾小球系膜细胞氧化应激水平及糖基化终产物受体(RAGE)表达的影响。方法:体外常规培养人肾小球系膜细胞,运用糖基化修饰的牛血清白蛋白(AGE-BSA)和缬沙坦进行干预,流式细胞术检测细胞内活性氧(ROS),RT-PCR法检测NADPH氧化酶的亚基p47^phox的mRNA表达,RT-PCR和细胞免疫化学法检测RAGE的表达量。结果:缬沙坦干预组人肾小球系膜细胞的ROS产生量、NADPH氧化酶的亚基p47^phox mRNA表达量、RAGE表达量均低于AGE-BSA组(P〈0.05),且缬沙坦的抑制作用呈浓度和时间依赖性。结论:缬沙坦可能通过降低氧化应激水平来抑制RAGE的表达。 相似文献
16.
本文探讨蒺藜皂苷(STT)对糖基化终产物(AGEs)形成及AGEs诱导的内皮细胞功能障碍的影响。以荧光法检测AGEs体外形成,MTT法检测细胞存活率,试剂盒方法检测细胞及培养上清液中的一氧化氮(NO)水平、诱导型NO合酶(iNOS)活力和超氧阴离子水平(O2-.)。结果显示STT促进AGEs形成,并加剧AGEs诱导的内皮细胞生长抑制,提高细胞NO分泌,增加iNOS活力和O2-.水平。与海可、替告皂苷元作用进行比较,发现STT的细胞损伤作用可能是海可皂苷元引起的。提示STT未能抑制体外AGEs形成,对AGEs引起的内皮细胞功能障碍无明显保护作用,反而可能通过增强iNOS酶活加剧细胞损伤。 相似文献
17.
Despite the administration of exogenous insulin and other medications used to control many aspects of diabetes mellitus (DM), increased oxidative stress has been increasingly acknowledged in DM development and complications. Therefore, this study aims to investigate the role of advanced glycation end-products (AGEs) in oxidative stress (OS) of thyroid cells in patients with DM. Patients with DM with or without thyroid dysfunction (TD) were enrolled. Thyroid toxic damage was induced by adding AGE-modified bovine serum albumin (AGE-BSA) to normal human thyroid follicular epithelial cells. The cell viability, cell cycle, and cell apoptosis, as well as the content of reactive oxygen species (ROS), catalase (CAT), and malondialdehyde (MDA) in cells were measured. Thyroid hormones, T3, T4, FT3, and FT4 levels were measured by enzyme-linked immunosorbent assay. Receptor for advanced glycation end products ( RAGE), sirtuin1 ( Sirt1), and NF-E2-related factor 2 ( Nrf2) expressions were detected, and the mitochondrial membrane potential was measured. We found increased AGEs in the serum of DM patients with TD. By increasing AGE-BSA concentration, cell viability; the thyroid hormones T3, T4, FT3, and FT4 levels; and mitochondrial membrane potential all significantly decreased. However, the increase in AGE-BSA concentration led to an increase in cell apoptosis, RAGE, and nuclear factor-κB expressions but produced the opposite effect on Sirt1, Nrf2, and heme oxygenase-1 expressions, as well as a decrease in antioxidant response element protein levels. The AGE-BSA increased ROS and MDA levels and reduced CAT level in normal human thyroid follicular epithelial cells on a dose independence basis. Our results demonstrated that AGEs-mediated direct increase of RAGE produced OS in thyroid cells of DM by inactivating the Sirt1/Nrf2 axis. 相似文献
18.
Advanced glycation end products (AGEs) play a causative role in the complications involved with diabetes mellitus (DM). Nowadays, DM with hypothyroidism (DM-hypothyroidism) is indicative of an ascended tendency in the combined morbidity. In this study, we examine the role of the receptor (RAGE) played for AGEs in thyroid hormone (TH) secretion via the silent information regulator 1 (SIRT1)/nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) pathway. Blood samples were collected from patients with type 2 DM (T2DM)-hypothyroidism and from patients with T2DM, followed by detection of serum AGEs level. The underlying regulatory mechanisms of RAGE were analyzed in association with the treatment of high glucose, siRNA against RAGE, AGE, SIRT1, or Nrf2 vector in normal immortalized thyroid Nthy-ori 3-1 cells. Serum of patients with T2DM-hypothyroidism indicated promoted levels of AGEs vs those with just T2DM. Both AGEs and high glucose triggered cellular damage, increased oxidative stress, as well as displayed a decreased survival rate along with TH secretion in the Nthy-ori 3-1 cells. Moreover, AGEs and high glucose also led to RAGE upregulation, both SIRT1 and NRF2 downregulation, and the decreased expression of TH secretion–related proteins in Nthy-ori 3-1 cells. Notably, these alternations induced by the AGEs can be reserved by silencing RAGE or upregulating either SIRT1 or Nrf2, indicating a mechanism of regulating TH secretion through the SIRT1/Nrf2 pathway. Collectively, our data proposed that AGEs and high glucose exerted a potent effect on cellular damage and TH deficiency in Nthy-ori 3-1 cells through the RAGE upregulation as well as SIRT1/Nrf2 pathway inactivation. This mechanism may underlie the occurrence of DM-hypothyroidism. 相似文献
19.
ObjectiveC-reactive protein (CRP), the prototypic marker of inflammation, has been shown to be an independent predictor of atherosclerosis. CRP can regulate receptor for advanced glycation end-products (RAGE) expression in endothelial progenitor cells (EPCs). Endothelial nitric oxide synthase (eNOS) deficiency is a pivotal event in atherogenesis. It is believed that decreased eNOS bioactivity occurs early in atherogenesis. Therefore, we tested the hypothesis that CRP can alter eNOS expression and promote apoptosis in EPCs through RAGE. Methods and resultsEPCs, isolated from bone marrow, were cultured in the presence or absence of LPS-free CRP (5, 10, 15, 20, and50 μg/ml). RAGE protein expression and siRNA were measured by flow cytometric analysis. PCR was used to detect eNOS mRNA expression. eNOS protein expression was measured by Western blot analysis. A spectrophotometer was used to assess eNOS activity. A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure adhesiveness. A MTT assay was used to determine proliferation. Apoptosis was evaluated by annexin V immunostaining and TUNEL staining. Co-culturing with CRP caused a significant down-regulation of eNOS expression, inhibited the proliferation, migration, and adhesion of EPCs, and induced EPC apoptosis. In addition, these effects were attenuated during RAGE protein expression blockade by siRNA. ConclusionsCRP, at concentrations known to predict cardiovascular event, directly quenches the expression of eNOS and diminishes NO production, and may serve to impair EPC function and promote EPC apoptosis through RAGE. These data further support a direct role of CRP in the development and/or progression of atherosclerosis and indicate a new pathophysiologic mechanism of disturbed vascular adaptation in atherosclerosis. 相似文献
20.
Intervertebral disc degeneration is widely recognized as a cause of lower back pain, neurological dysfunction and other musculoskeletal disorders. The major inflammatory cytokine IL‐1β is associated with intervertebral disc degeneration; however, the molecular mechanisms that drive IL‐1β production in the intervertebral disc, especially in nucleus pulposus (NP) cells, are unknown. In some tissues, advanced glycation end products (AGEs), which accumulate in NP tissues and promote its degeneration, increase oxidative stress and IL‐1β secretion, resulting in disorders, such as obesity, diabetes mellitus and ageing. It remains unclear whether AGEs exhibit similar effects in NP cells. In this study, we observed significant activation of the NLRP3 inflammasome in NP tissues obtained from patients with degenerative disc disease compared to that with idiopathic scoliosis according to results detected by Western blot and immunofluorescence. Using NP cells established from healthy tissues, our in vitro study revealed that AGEs induced an inflammatory response in NP cells and a degenerative phenotype in a NLRP3‐inflammasome‐dependent manner related to the receptor for AGEs (RAGE)/NF‐κB pathway and mitochondrial damage induced by mitochondrial reactive oxygen species (mtROS) generation, mitochondrial permeability transition pore (mPTP) activation and calcium mobilization. Among these signals, both RAGE and mitochondrial damage primed NLRP3 and pro‐IL‐1β activation as upstream signals of NF‐κB activity, whereas mitochondrial damage was critical for the assembly of inflammasome components. These results revealed that accumulation of AGEs in NP tissue may initiate inflammation‐related degeneration of the intervertebral disc via activation of the NLRP3 inflammasome. 相似文献
|