首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Porcine brain capillary endothelial cells (PBCEC) cultured in serum-free and hydrocortisone supplemented medium are characterised by high transendothelial electrical resistances and low cell monolayer permeabilities for small solutes very similar to the blood-brain barrier (BBB) in vivo. Differential screening of a subtracted cDNA library disclosed a 2.1-kb mRNA that is overexpressed in hydrocortisone treated PBCEC relative to untreated cells. The mRNA encodes a 656-aa member of the ATP-binding cassette (ABC) superfamily of transporters that we named brain multidrug resistance protein (BMDP). Phylogenetic analysis and multiple sequence alignment showed that porcine BMDP is most related to the human and mouse breast cancer resistance protein (BCRP). Northern blot analysis revealed that BMDP is expressed in brain tissue in vivo and was predominantly localised within the endothelial cells isolated from brain capillaries. Thus, we identified a new transport protein at the BBB that might play an important role in the exclusion of xenobiotics from the brain.  相似文献   

2.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

3.
吴新刚  彭姝彬  黄谦 《遗传》2012,34(12):1529-1536
乳腺癌耐药蛋白(Breast cancer resistance protein, BCRP), 又名ABCG2, 是ATP结合盒(ATP-binding cas-sette, ABC)转运蛋白超家族成员之一, 在肿瘤多药耐药中具有十分重要的作用。BCRP基因启动子区无TATA盒, 含CAAT盒、AP1位点、AP2位点以及CpG岛下游的多个Sp-1位点。近年来的研究发现, 转录因子孕激素受体(PR)、雌激素受体(ER)、核因子-κB (NF-κB)、缺氧诱导因子(HIF)、Nrf2、芳香烃受体(AhR)、过氧化物酶体增殖活化受体(PPAR)和KLF5等可与BCRP启动子或增强子区的特定反应元件结合进而激活BCRP的转录。促炎细胞因子、生长因子、同源盒基因MSX2、Sonic hedgehog信号通路、Notch信号通路和RAR/RXR信号通路等均参与了BCRP的转录调控。此外, 启动子甲基化和组蛋白乙酰化在BCRP转录调控尤其是药物诱导BCRP表达中发挥重要作用。文章综述了这一研究领域的进展, 着重讨论了转录因子及表观遗传学在BCRP转录调控中的作用。  相似文献   

4.
Specific inhibition of P-glycoprotein (Pgp) expression, which is encoded by multidrug resistance gene-1 (MDR1), is considered a well-respected strategy to overcome multidrug resistance (MDR). Deoxyribozymes (DRz) are catalytic nucleic acids that could cleave a target RNA in sequence-specific manner. However, it is difficult to select an effective target site for DRz in living cells. In this study, target sites of DRz were screened according to MDR1 mRNA secondary structure by RNA structure analysis software. Twelve target sites on the surface of MDR1 mRNA were selected. Accordingly, 12 DRzs were synthesized and their suppression effect on the MDR phenotype in breast cancer cells was confirmed. The results showed that 4 (DRz 2, 3, 4, 9) of the 12 DRzs could, in a dose-dependent response, significantly suppress MDR1 mRNA expression and restore chemosensitivity in breast cancer cells with MDR phenotype. This was especially true of DRz 3, which targets the 141 site purine-pyrimidine dinucleotide. Compared with antisense oligonucleotide or anti-miR-27a inhibitor, DRz 3 was more efficient in suppressing MDR1 mRNA and Pgp protein expression or inhibiting Pgp function. The chemosensitivity assay also proved DRz 3 to be the best one to reverse the MDR phenotype. The present study suggests that screening targets of DRzs according to MDR1 mRNA secondary structure could be a useful method to obtain workable ones. We provide evidence that DRzs (DRz 2, 3, 4, 9) are highly efficient at reversing the MDR phenotype in breast carcinoma cells and restoring chemosensitivity.  相似文献   

5.
6.
Herein, we investigated efflux pumps-mediated talazoparib-resistance in the treatment of triple-negative breast cancer (TNBC). Furthermore, we produced a novel talazoparib-solid lipid nanoparticles (SLNs) and then explored in vitro therapeutic efficacy of talazoparib-SLNs to overcome talazoparib-resistance in TNBC cells. Talazoparib-SLNs formulation was produced and then characterized. Calcein and Rho-123 were used to analyze the functional activity of drug efflux pumps in these cells. Additionally, RT-PCR, western blot and immunofluorescence analysis were used to detect the messenger RNA, and protein expression level, and cellular localization of the multidrug resistance (MDR1), breast cancer resistance protein (BCRP), and MRP1. We found that talazoparib efflux was mediated by BCRP and MRP1 pumps in TNBC cells. Talazoparib-SLNs could significantly enhance therapeutic efficacy of talazoparib. Furthermore, talazoparib-SLNs were more effective in the suppression of MDR1, BCRP, and MRP1 gene and protein expression levels than talazoparib. Consequently, this study suggests that talazoparib-SLNs formulation represents a promising therapeutic carrier to reverse MDR-mediated resistance in TNBC.  相似文献   

7.
Bark H  Xu HD  Kim SH  Yun J  Choi CH 《FEBS letters》2008,582(17):2595-2600
This study investigated whether P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are linked in terms of expression. RT-PCR and Western blot analyses showed that the lung cancer cell line SK-MES-1/WT expressed BCRP. In a drug-free state, BCRP expression was significantly down-regulated in doxorubicin-resistant SK-MES-1/DX1000 cells overexpressing Pgp. Pharmacological inhibitors (PSC833 or verapamil) or siRNA for Pgp inhibited the down-regulation of BCRP, which was confirmed by confocal microscopy. PSC833 induced the phosphorylation of c-Jun NH2-terminal kinase (JNK) and c-Jun, while the JNK inhibitor SP600125 inhibited this effect. Dominant negative c-Jun decreased the expression of BCRP, but increased that of Pgp. These results indicate that Pgp down-regulates BCRP expression in a drug-free state in which JNK/c-Jun is involved.  相似文献   

8.
ABCG2 is a human membrane ATP-binding cassette half-transporter that hydrolyzes ATP to efflux a large number of chemotherapeutic agents. Several oligomeric states of ABCG2 from homodimers to dodecamers have been reported depending on the overexpression systems and/or the protocols used for purification. Here, we compared the oligomeric state of His6-ABCG2 expressed in Sf9 insect cells and in human Flp-In-293/ABCG2 cells after solubilization in mild detergents. His6-ABCG2 was purified through a new approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipid. This approach allowed the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages. ABCG2 purified onto the NiNTA lipid surfaces were directly analyzed by electron microscopy and by biochemical assays. Altogether, our data are consistent with a tetrameric organization of ABCG2 when expressed in either heterologous Sf9 insect cells or in human homologous cells.  相似文献   

9.
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.  相似文献   

10.
The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.  相似文献   

11.
The multidrug transporter ABCG2, a membrane protein with six transmembrane segments, can be overexpressed with the baculovirus/insect cell system. However, ABCG2 is produced as two species with different migration behavior via SDS–PAGE. Evidences suggest that this is due to the accumulation of an immature ABCG2 species, since: (i) the upper species, with higher apparent molecular weight, was favored by treatments reducing the rate of protein synthesis; (ii) the lower species was accumulated in presence of an endoplasmic reticulum stress inducer, and could be converted into the upper species during electrophoresis with 9 M urea; (iii) each species was differently solubilized by detergents: the upper species was partially solubilized by non-ionic and zwitterionic detergents, whereas the lower one required stronger surfactants; (iv) membrane ATPase activity from infected insect cells was essentially associated to the upper species. Altogether, these results suggest that although the insect cell/baculovirus system is not ideally adapted to overexpress human ABCG2, it is able to produce appreciable amounts of purified protein and the addition of agents reducing the rate of protein synthesis improves the homogeneity, making it a suitable heterologous expression system.  相似文献   

12.
Tamoxifen is commonly used to treat patients with ESR/ER-positive breast cancer, but its therapeutic benefit is limited by the development of resistance. Recently, alterations in macroautophagy/autophagy function were demonstrated to be a potential mechanism for tamoxifen resistance. Although MTA1 (metastasis-associated 1) has been implicated in breast tumorigenesis and metastasis, its role in endocrine resistance has not been studied. Here, we report that the level of MTA1 expression was upregulated in the tamoxifen resistant breast cancer cell lines MCF7/TAMR and T47D/TR, and knockdown of MTA1 sensitized the cells to 4-hydroxytamoxifen (4OHT). Moreover, knockdown of MTA1 significantly decreased the enhanced autophagy flux in the tamoxifen resistant cell lines. To confirm the role of MTA1 in the development of tamoxifen resistance, we established a cell line, MCF7/MTA1, which stably expressed MTA1. Compared with parental MCF7, MCF7/MTA1 cells were more resistant to 4OHT-induced growth inhibition in vitro and in vivo, and showed increased autophagy flux and higher numbers of autophagosomes. Knockdown of ATG7 or cotreatment with hydroxychloroquine, an autophagy inhibitor, restored sensitivity to 4OHT in both the MCF7/MTA1 and tamoxifen resistant cells. In addition, AMP-activated protein kinase (AMPK) was activated, probably because of an increased AMP:ATP ratio and decreased expression of mitochondrial electron transport complex components. Finally, publicly available breast cancer patient datasets indicate that MTA1 levels correlate with poor prognosis and development of recurrence in patients with breast cancer treated with tamoxifen. Overall, our findings demonstrated that MTA1 induces AMPK activation and subsequent autophagy that could contribute to tamoxifen resistance in breast cancer.  相似文献   

13.
Escherichia coli EmrE is a small multidrug resistance protein encompassing four transmembrane (TM) sequences that oligomerizes to confer resistance to antimicrobials. Here we examined the effects on in vivo protein accumulation and ethidium resistance activity of single residue substitutions at conserved and variable positions in EmrE transmembrane segment 2 (TM2). We found that activity was reduced when conserved residues localized to one TM2 surface were replaced. Our findings suggest that conserved TM2 positions tolerate greater residue diversity than conserved sites in other EmrE TM sequences, potentially reflecting a source of substrate polyspecificity.  相似文献   

14.
The breast cancer resistance protein ABCG2 effluxes a variety of drugs and is believed to play an important role in multidrug resistance to chemotherapy. We show here for the first time that dexamethasone (DEX) and progesterone (PROG) are able to strongly inhibit ABCG2 expression in progesterone receptor (PR)-positive MCF7 and PR-negative MDA-MB-231 breast cells. In contrast, in the latter cells stably-transfected with progesterone receptor isoforms A and B, ABCG2 expression was strongly up-regulated by DEX and PROG. In addition, two other ligands of Pregnane X Receptor (PXR) and/or Glucocorticoid Receptor (GR) were also able to down-regulate ABCG2 expression in PXR- and GR-positive MCF7 cells. ABCG2 expression regulation by DEX likely resulted from the activation of PR-, PXR-, and/or GR-signaling pathways. ABCG2 expression inhibition by DEX was associated with increased sensitivity to mitoxantrone, a known ABCG2 substrate. The findings suggest that DEX may be useful in improving drug efficacy under certain conditions.  相似文献   

15.
In spite of our expanding knowledge on the molecular biology of cancer, relatively little progress has been made in improving therapy for the solid tumours which are major killers, e.g., lung, colon, breast. Significant advances over the past 10–15 years in chemotherapy of some tumours such as testicular cancer and some leukaemias indicates that, in spite of the undesirable side-effects, chemotherapy has the potential to effect cure in the majority of patients with certain types of cancer. Multidrug resistance, inherent or acquired, is one important limiting factor in extending this success to most solid tumours.In vitro studies described in this review are now uncovering a diversity of possible mechanisms of cross-resistance to different types of drug. Sensitive methods such as immunocytochemistry, RT-PCR orin situ RNA hybridisation may be necessary to identify corresponding changes in clinical material. Only by classifying individual tumours according to their specific resistance mechanisms will it be possible to define the multidrug resistance problem properly. Such rigorous definition is a prerequisite to design (and choice on an individual basis) of specific therapies suited to individual patients. Since a much larger proportion of cancer biopsies should be susceptible to accurate analysis by the immunochemical and molecular biological techniques described above than to direct assessment of drug response, it seems reasonable to hope that this approach will succeed in improving results for cancer chemotherapy of solid tumours where other approaches such as individualisedin vitro chemosensitivity testing have essentially failed. Results from clinical trials using cyclosporin A or verapamil are encouraging, but these agents are far from ideal, and reverse resistance in only a subset of resistant tumours. Proper definition of the other mechanisms of MDR, and how to antagonize them, is an urgent research priority.Abbreviations MDR multiple drug resistance - P-170=pgp P-glycoprotein=product ofmdr-1 gene  相似文献   

16.
17.
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.  相似文献   

18.
19.
20.
SP analysis may be used to identify cancer stem cell populations   总被引:28,自引:0,他引:28  
Side populations (SP), as defined by Hoechst exclusion in flow cytometry, have been described a few years ago. While they represent only a small fraction of the whole cell population, their properties confer an important place in several investigations. SP cells express high levels of various members of ABC transporters family, such as MDR1 and BCRP, which are responsible for drug resistance. Targeting SP could improve cancer therapy by blocking these transporters. In addition, SP appear to be enriched in stem cells, cells that play a pivotal role in normal development and cancer biology. Thus, they could provide a useful tool and a readily accessible source for stem cell studies in both the normal and cancerous settings. However, these cells are poorly defined and pose challenges in their identification and isolation, particularly since they are few in number. Thus, better characterization of SP will advance our understanding of stem cells and will provide us an accessible target for drug resistance in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号