首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Shi Y  Zhai H  Wang X  Han Z  Liu C  Lan M  Du J  Guo C  Zhang Y  Wu K  Fan D 《Experimental cell research》2004,296(2):337-346
Ribosomal proteins (RP) S13 and RPL23 were previously identified as two upregulated genes in a multidrug-resistant gastric cancer cell line SGC7901/VCR compared to its parental cell SGC7901 by differential display PCR. The aim of this study was to explore the roles of RPS13 and RPL23 in multidrug resistance (MDR) in gastric cancer cells. RPS13 and RPL23 were genetically overexpressed in SGC7901 cells, respectively. Either RPS13 or RPL23 enhanced resistance of SGC7901 cells to vincristine, adriamycin, and 5-fludrouracil. RPL23 also enhanced resistance of SGC7901 cells to cisplatin. Overexpression of either RPS13 or RPL23 did not alter the population doubling time, [3H]leucine incorporation, and intracellular adriamycin accumulation of SGC7901 cells. However, either RPS13 or RPL23 could protect SGC7901 cells from undergoing vincristine-induced apoptosis. Western blot analysis revealed that both RPS13 and RPL23 significantly increased the expression level of Bcl-2 and Bcl-2/Bax ratio in SGC7901 cells. In addition, overexpression of RPL23 enhanced glutathione S-transferase (GST) activity and intracellular glutathione content in SGC7901 cells. Together, this work demonstrates that either RPS13 or RPL23 can promote MDR in gastric cancer cells by suppressing drug-induced apoptosis, and that RPL23 may also promote MDR in gastric cancer cells through regulation of glutathione S-transferase-mediated drug-detoxifying system.  相似文献   

2.
Yin F  Du Y  Hu W  Qiao T  Ding J  Wu K  Liu Z  Fan D 《Life sciences》2006,78(12):1277-1286
Mad2beta is an alternative splicing variant of spindle checkpoint gene mad2, which was previously found by us and was related to the drug resistance in gastric cancer cells. In this paper, we explored the molecular mechanisms that Mad2beta variant promoted the formation of multidrug resistance in gastric cancer cells. We found that Mad2beta variant was detected only in the two human drug resistant gastric cancer cell sublines SGC7901/VCR and SGC7901/ADR, and it did not appear in its parental cell line SGC7901 and other detected gastric cancer cell lines. Expressions of Mad2 mRNA and protein in SGC7901 cells transfected with Mad2beta, SGC7901/VCR and SGC7901/ADR were significantly lower than that in SGC7901 cells. Moreover, SGC7901 cells overexpressing Mad2beta variant became more resistant to adriamycin, vincristine and mitomycin by abrogating mitotic arrest and apoptosis. This suggests that expression of Mad2beta variant decreases the relative expression of efficient MAD2, which may help gastric cancer cells to develop the phenotype of multidrug resistance.  相似文献   

3.
Mitotic arrest deficient 2 (MAD2) is an essential component of the mitotic spindle checkpoint pathway. It was previously shown to be associated with drug resistance of tumor cells. To further explore the roles of MAD2 in responses of gastric cancer cells to chemotherapy drugs, we constructed the siRNA vectors of MAD2 and transfected them into gastric cancer SGC7901 cells to inhibit expression of MAD2. MTT assay showed that the downregulation of MAD2 increased the resistance of SGC7901 cells to spindle inhibitors and DNA damaging agents. The apoptosis rates of gastric cancer cells transfected with MAD2-siRNA were 10.7% and 10%, respectively, after treated by 1.0microg/ml VCR and cisplatin. In contrast, the apoptosis rates of SGC7901 and SGC7901/psilencer3.1 induced by VCR were 43.2%, 38.7%; and that induced by cispaltin were 34.1%, 31.4%. The ratio of Bcl-2 to Bax was much higher in the MAD2-siRNA transfectants compared with the SGC7901/psilencer. In SGC7901/psilencer, cytochrome c and cleaved caspase 3 protein levels increased along with the exposure time increased. However, these protein levels of SGC7901/MAD2-siRNA had no changes during the drug treatment. These results indicate that down regulation of MAD2 could promote the drug resistance of gastric cancer cells and inhibit anticancer drugs induced-apoptosis by upregulating Bcl-2 and interfering the mitochondrion apoptosis pathway.  相似文献   

4.
The present study aimed to investigate the potassium currents and further explore the role of potassium channels in drug response of gastric cancer cells. By patch-clamp technique, potassium currents of human gastric cancer cell SGC7901 were recorded in the mode of voltage clamp. Both 4-aminopyridine (4-AP) and tetraethylammonium (TEA) could almost completely block this current. The chemotherapeutic drugs, adriamycin or 5-fluorouracil could significantly increase the K(+) current density on SGC7901 cells in a dose-dependent manner. 4-AP or TEA was found to restrain adriamycin-induced apoptosis and enhance multidrug-resistant phenotype of SGC7901 cells. Up-regulation of Kv1.5, which has been found widely expressed in gastric cancer cells including SGC7901, increased the K(+) current density and sensitivity of SGC7901 cells to multiple chemotherapeutic drugs, whereas down-regulation of Kv1.5 enhanced the drug-resistant phenotype of SGC7901 cells. In conclusion, potassium channels may exert regulatory effects on multidrug resistance by regulating drug-induced apoptosis in gastric cancer cells.  相似文献   

5.
目的:建立人胃癌SGC7901表柔比星耐药细胞系,探讨其对表柔比星的耐药机制。方法:采用逐步增加表柔比星浓度,间歇作用体外诱导法,建立人胃癌SGC7901表柔比星耐药细胞亚系SGC7901/EPI。用MTT法测定药物敏感性;流式细胞仪检测其药物排除能力和凋亡抵抗能力等生物学指标的改变,western blot检测相关蛋白的表达。结果:经过12个月建成人胃癌SGC7901表柔比星耐药细胞系SGC7901/EPI,其对表柔比星明显耐药,且对其他多种抗癌药具有不同程度的交叉耐药性,阿霉素蓄积潴留实验显示SGC7901/EPI的阿霉素含量明显低于亲本细胞,Western blot显示MRP1的表达上调;SGC7901/EPI凋亡抵抗能力明显上升,Bcl-2表达比亲本细胞增高,而Bax的表达下调。结论:SGC7901/EPI细胞具有多药耐药表型,其可能通过MRP1的上调增加药物排出和上调Bcl-2/Bax的比值促进凋亡抵抗等机制产生耐药。该胃癌多药耐药细胞亚系为进一步研究胃癌耐药机制及逆转方法奠定基础。  相似文献   

6.
7.
目的:研究胃癌多药耐药相关microRNA并对其进行鉴定、靶基因预测和预测靶基因的生物信息学分析。方法:运用microRNA芯片对胃癌多药耐药细胞SGC7901/ADR和其亲本细胞SGC7901进行microRNA表达谱分析;采用实时定量PCR的方法对差异表达的miRNA进行验证;再运用生物信息学方法对差异表达的miRNA进行靶基因预测;再对预测的靶基因进行GO和KEGG通路分析。结果:与SGC7901相比SGC7901/ADR表达上调超过2倍的miRNA有6个,表达下调超过2倍的有11个。实时定量PCR对共同差异表达的microRNA进行验证显示与芯片结果的一致性。对这17个差异表达的miRNA进行靶基因预测,再对预测得到的靶基因进行GO和KEGG通路分析显示预测的靶基因参与了肿瘤相关通路、MAPK通路、Focal Adhesion通路等。结论:我们初步筛选得到了胃癌多药耐药相关miRNA并对其进行了生物信息学分析,为进一步地探索miRNA在胃癌多药耐药中的作用及其分子机制奠定了基础。  相似文献   

8.
Sunitinib, a small-molecule multi-targeted tyrosine kinase inhibitor, has been applied in phase II clinical trial as second-line treatment for advanced gastric cancer. In this study, we determined the effect of Sunitinib on the multidrug resistance in gastric cancer cells selected by vincristine. Our results showed that Sunitinib significantly enhanced the cytotoxicity of adriamycin, vincristine, etoposide, 5-Fluorouracil, and cisplatin in multidrug-resistant gastric cancer cells (SGC7901/VCR). Sunitinib significantly increased the intracellular accumulation and retention of rhodamine 123 in the SGC7901/VCR cells. However, Sunitinib, at a concentration that reverses MDR, had no significant effect on P-gp protein or mRNA expression levels. In addition, the present study revealed that Sunitinib inhibited Stat3 and down-regulated Bcl-2 in SGC7901/VCR cells, which might also contribute to the reversal of MDR. In conclusion, Sunitinib reverses multidrug resistance in gastric cancer cells by inhibiting P-gp transporter function and modulating Stat3 and Bcl-2. Further study with Sunitinib may be helpful for developing combination therapeutic strategy or circumventing gastric cancer MDR to other conventional anti-cancer drugs.  相似文献   

9.
Hong L  Wang J  Han Y  Zhao Y  Gao J  Wang J  Han Y  Zhang X  Yan L  Zhou X  Qiao T  Chen Z  Fan D 《Cell biology international》2007,31(9):1010-1015
Here we investigated the roles of DARPP-32 in multidrug resistance (MDR) of gastric cancer cells and the possible underlying mechanisms. We constructed the eukaryotic expression vector of DARPP-32 and transfected it into human vincristine-resistant gastric adenocarcinoma cell line SGC7901/VCR. Up-regulation of DARPP-32 could significantly enhance the sensitivity of SGC7901/VCR cells towards vincristine, adriamycin, 5-fluorouracil and cisplatin, and could decrease the capacity of cells to efflux adriamycin. What's more, the results of subrenal capsule assay confirmed that DARPP-32 might play a certain role in MDR of gastric cancer. DARPP-32 could significantly down-regulate the expression of P-gp and zinc ribbon domain-containing 1 (ZNRD1), but not alter the expression of multidrug resistance-associated protein (MRP) or the glutathione S-transferase (GST). DARPP-32 could also significantly decrease the anti-apoptotic activity of SGC7901/VCR cells. Further study of the biological functions of DARPP-32 might be helpful for understanding the mechanisms of MDR in gastric cancer.  相似文献   

10.
目的:研究胃癌耐药细胞及其亲本细胞中长链非编码RNA UCA1的表达差异,探讨UCA1在胃癌多药耐药中的作用。方法:通过实时荧光定量PCR(q RT-PCR)检测胃癌耐药细胞SGC7901/ADR、SGC7901/VCR及其亲本细胞SGC7901中UCA1的表达差异;通过si RNA转染降低SGC7901/ADR中UCA1表达,MTT法检测细胞半数抑制浓度(IC50)的变化,流式细胞仪检测细胞凋亡变化。结果:QRT-PCR结果显示,UCA1在SGC7901/ADR和SGC7901/VCR胃癌耐药细胞表达显著高于SGC7901胃癌亲本细胞;MTT实验表明,干扰UCA1的SGC7901/ADR相对于阴性对照(NC)组的IC50显著降低;凋亡检测结果显示,在相同剂量化疗药物作用下,干扰UCA1后SGC7901/ADR凋亡率显著高于NC组;Western blot证实,干扰UCA1表达可显著降低BCL-2蛋白表达。结论:长链非编码RNA UCA1在胃癌耐药细胞表达显著升高,干扰UCA1表达可明显逆转胃癌耐药,UCA1可作为治疗胃癌耐药的重要分子靶标。  相似文献   

11.
应用蛋白质组学技术筛选胃癌耐药相关蛋白质   总被引:3,自引:1,他引:3  
胃癌多药耐药性是临床胃癌化疗失败最主要的原因之一,但其分子机制仍然不太清楚.为了寻找新的胃癌耐药相关的蛋白质,揭示胃癌多药耐药的分子机制,以胃癌细胞SGC7901和长春新碱诱导的耐药胃癌细胞SGC7901/VCR为研究对象,应用二维凝胶电泳(two-dimensionalelectrophoresis,2-DE)技术分离两种细胞的总蛋白质,图像分析识别差异表达的蛋白质点,基质辅助激光解吸电离飞行时间质谱(matrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry,MALDI-TOF-MS)及电喷雾电离串联质谱(electrosprayionizationtandemmassspectrometry,ESI-Q-TOF)对差异表达的蛋白质点进行鉴定,蛋白质印迹和实时RT-PCR验证部分差异蛋白质在两株细胞中的表达水平,反义核酸转染技术分析HSP27(heatshockprotein27,HSP27)高表达与SGC7901/VCR耐药的相关性.得到了分辨率较高、重复性较好的两株细胞系的二维凝胶电泳图谱,质谱分析共鉴定了24个差异蛋白质点,蛋白质印迹和实时RT-PCR验证了部分差异蛋白的表达水平,反义寡核苷酸抑制HSP27表达能增加SGC7901/VCR对长春新碱的敏感性.研究结果不仅提示这些差异蛋白质如HSP27,Sorcin等可能与胃癌的多药耐药相关,而且为揭示胃癌细胞的多药耐药性产生机制提供了线索.  相似文献   

12.
Recently, great advances have been achieved in both surgery and chemotherapy for the treatment of gastric cancer, but there is still poor prognosis for this disease. The aim of this study is to investigate the role of liver X receptor β (LXRβ) in chemosensitivity of gastric cancer SGC7901 cells. From 171 patients with gastric cancer, the gastric cancer and paracancerous tissues were selected to measure the expression of LXRβ and ATF4. Gastric cancer cell lines were cultured and screened to figure out the proliferation and apoptosis of gastric cancer SGC7901 cells with the treatment of LXRβ agonist (GW3965), ATF4 short hairpin RNA (shRNA), and chemotherapy drug paclitaxel. The expression of apoptosis-related gene cleaved caspase-3 was detected by Western blot analysis. First, we found that the expressions of LXRβ and ATF4 in gastric cancer tissues and cells were significantly lower than those in their paracancerous tissues and gastric mucosal epithelial cells. In addition, activation of LXRβ and paclitaxel treatment suppressed proliferation of SGC7901 cells, and the expression of ATF4 was upregulated in a concentration-dependent manner. Furthermore, shRNA significantly inhibited the expression of ATF4 and blocked the chemosensitivity of SGC7901 cells to LXRβ activation. Our study demonstrates that the expression of LXRβ was low in gastric cancer. In addition, activation of LXRβ may inhibit the proliferation of gastric cancer cells, promote apoptosis, and increase chemosensitivity by upregulating the expression of ATF4.  相似文献   

13.
14.
15.
16.
We aimed to study the effects of LY294002, an inhibitor of class I phosphatidylinositol 3-kinase (PI3K), on proliferation, apoptosis, and autophagy in gastric cancer cell line SGC7901. In this study, we showed that LY294002 inhibited the viability of gastric cancer SGC7901 cells. We also showed that LY294002 increased the expression of microtubule-associated protein 1 light chain 3 (LC3), and increased monodansylcadaverine (MDC)-labeled vesicles. LY294002 activated autophagy by activating p53 and caspase-3, and induced apoptosis by up-regulatingp53 and p53-up-regulated modulator of apoptosis ( PUMA ). Therefore, LY294002 might induce cytotoxicity in SGC7901 cells through activation of p53 and the downstream point PUMA . These findings suggest that inhibition of the class I PI3K signaling pathway is a potential strategy for managing gastric cancers.  相似文献   

17.

Aim

To investigate the inhibitory effect of pseudolaric acid B on subcutaneous xenografts of human gastric adenocarcinoma and the underlying molecular mechanisms involved in its multidrug resistance.

Methods

Human gastric adenocarcinoma SGC7901 cells and drug-resistant SGC7901/ADR cells were injected into nude mice to establish a subcutaneous xenograft model. The effects of pseudolaric acid B with or without adriamycin treatment were compared by determining the tumor size and weight. Cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein expression levels were determined by immunohistochemistry and western blot.

Results

Pseudolaric acid B significantly suppressed the tumor growth induced by SGC7901 cells and SGC7901/ADR cells. The combination of pseudolaric acid B and the traditional chemotherapy drug adriamycin exhibited more potent inhibitory effects on the growth of gastric cancer in vivo than treatment with either pseudolaric acid B or adriamycin alone. Protein expression levels of cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein were inhibited by pseudolaric acid B alone or in combination with adriamycin in SGC7901/ADR cell xenografts.

Conclusion

Pseudolaric acid B has a significant inhibitory effect and an additive inhibitory effect in combination with adriamycin on the growth of gastric cancer in vivo, which reverses the multidrug resistance of gastric neoplasm to chemotherapy drugs by downregulating the Cox-2/PKC-α/P-gp/mdr1 signaling pathway.  相似文献   

18.
Epidemiology researches indicated that gastric cancer is a male-predominant disease; both expression level of estrogen and expression pattern of estrogen receptors (ERs) influence its carcinogenesis. But the direct effect of estrogen on gastric cancer cells is still unclear. This study aimed to explore the direct effect of β-estradiol (E2) on gastric cancer cells. SGC7901 and BGC823 were treated with a serial of concentrations of E2. The survival rates of both the cell lines were significantly reduced, and the reduction of viability was due to apoptosis triggered by E2 treatment. Caspase 3 was activated in response to the increasing E2 concentration in both SGC7901 and BGC823. Cleaved Caspase 3 fragments were detected, and the expression levels of Bcl-2 and Bcl-xL were reduced. Apoptosis was further confirmed by flow cytometry. The expression level of PEG10, an androgen receptor target gene, was reduced during E2 treatment. Both ERα and ERβ were expressed in these cell lines, and the result of bioinformatics analysis of gastric cancer from GEO datasets indicated that the expression levels of both ERα and ERβ were significantly higher in noncancerous gastric tissues than in gastric cancer tissues. Our research indicated that estrogen can reduce cell viability and promote apoptosis in gastric cancer cells directly; ERs expression level is associated with gastric cancer. Our research will help to understand the mechanism of gender disparity in gastric cancer.  相似文献   

19.
Yang YX  Xiao ZQ  Chen ZC  Zhang GY  Yi H  Zhang PF  Li JL  Zhu G 《Proteomics》2006,6(6):2009-2021
In order to elucidate the mechanisms of multidrug resistance (MDR) of vincristine-resistant human gastric carcinoma cell line SGC7901/VCR, 2-DE was used to separate the total proteins of SGC7901/VCR and its parental cell line SGC7901. PDQuest software was applied to analyze 2-DE images, and the differential protein spots were identified by both MALDI-TOF-MS and ESI-Q-TOF-MS. Then the differential expressional levels of partially identified proteins were determined by Western blot analysis and real-time RT-PCR. Furthermore, the association of heat shock protein (HSP27), one of the highly expressed proteins in sgc7901/vcr, with MDR was analyzed using antisense inhibition of HSP27. In this study, the well-resolved, reproducible 2-DE patterns of SGC7901/VCR and SGC7901 were established, and yielded about 1100 protein-spots each. All the 24 differential proteins between the two cell lines were identified, and the differential expression levels of the partial proteins were confirmed. The suppression of HSP27 expression by HSP27 antisense oligonucleotides could enhance vincristine chemosensitivity in sgc7901/vcr and induce the cells to exhibit apoptotic morphological features after vincristine treatment. The differentially expressed proteins could be divided into six groups based on their functions: calcium-binding proteins, chaperones, proteins involved in drug detoxification or repair of DNA damage, metabolic enzymes, proteins related to cellular structure, and proteins relative to signal transduction, some of which may contribute to MDR of human gastric carcinoma cell line SGC7901/VCR. These data will be valuable for further study of the mechanisms of MDR in human gastric cancer.  相似文献   

20.
Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may play a role in the development of thermoresistance were identified. Additionally, suppression of NPM1 expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号