首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudoxanthoma elasticum (PXE) is a heritable disorder of the connective tissue affecting the skin, eyes, and cardiovascular system. Recently, the PXE candidate gene ABCC6 was identified and a limited number of ABCC6 mutations were observed in different PXE cohorts. To identify novel PXE-causing ABCC6 mutations in German patients with PXE, we investigated a cohort of 54 German PXE patients and 23 family members from 49 apparently nonconsanguineous families. From the mutational analysis we found 27 different ABCC6 sequence variations. Among these, 11 were polymorphisms or neutral alterations and 16 were PXE-causing mutations. The most common mutation in our PXE cohort was the nonsense mutation p.R1141X, which occurred with an allele frequency of 25.9%. Furthermore, we found nine missense, one additional nonsense, and two putative splice site mutations as well as three single-nucleotide deletions. Most of these mutations were unique and occurred in cytoplasmic regions of the MRP6 protein; these mutations are proposed to be critical for the physiological function of the MRP6 protein. In these regions we also found the three novel PXE-causing mutations p.R1114C, p.Y1239H, and p.G1311E, which were identified in three alleles from patients with PXE and were absent in 200 healthy control subjects. In addition, the first genotype-phenotype correlation was observed. By obtaining these genetic mutation data, we are contributing to an overview of all ABCC6 mutations leading to PXE and the pathogenetics of this disease.  相似文献   

2.
To better understand the pathogenetics of pseudoxanthoma elasticum (PXE), we performed a mutational analysis of ATP-binding cassette subfamily C member 6 (ABCC6) in 122 unrelated patients with PXE, the largest cohort of patients yet studied. Thirty-six mutations were characterized, and, among these, 28 were novel variants (for a total of 43 PXE mutations known to date). Twenty-one alleles were missense variants, six were small insertions or deletions, five were nonsense, two were alleles likely to result in aberrant mRNA splicing, and two were large deletions involving ABCC6. Although most mutations appeared to be unique variants, two disease-causing alleles occurred frequently in apparently unrelated individuals. R1141X was found in our patient cohort at a frequency of 18.8% and was preponderant in European patients. ABCC6del23-29 occurred at a frequency of 12.9% and was prevalent in patients from the United States. These results suggested that R1141X and ABCC6del23-29 might have been derived regionally from founder alleles. Putative disease-causing mutations were identified in approximately 64% of the 244 chromosomes studied, and 85.2% of the 122 patients were found to have at least one disease-causing allele. Our results suggest that a fraction of the undetected mutant alleles could be either genomic rearrangements or mutations occurring in noncoding regions of the ABCC6 gene. The distribution pattern of ABCC6 mutations revealed a cluster of disease-causing variants within exons encoding a large C-terminal cytoplasmic loop and in the C-terminal nucleotide-binding domain (NBD2). We discuss the potential structural and functional significance of this mutation pattern within the context of the complex relationship between the PXE phenotype and the function of ABCC6.  相似文献   

3.
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by a progressive mineralization of connective tissue, resulting in skin, arterial and eye disease. Classical PXE is caused by mutations in the ABCC6 gene, which encodes a member of the ABCC (MRP) family of organic anion transporters. Recent studies on Abcc6-/- mice show that the absence of ABCC6 in the liver is crucial for PXE and confirm the “metabolic disease hypothesis” for PXE, which states that tissue calcification is due to the absence of a plasma factor secreted from the basolateral hepatocyte membrane.

We propose that this plasma factor is vitamin K (precursor). We propose that vitamin K (precursor) is secreted by ABCC6 from the liver as a glutathione – (or glucuronide)-conjugate and that this supplements the vitamin K need of peripheral tissues that receive insufficient vitamin from the diet, because dietary vitamin K is effectively extracted from blood by the liver. Peripheral tissue vitamin K is needed for the gamma-carboxylation of glutamate residues in proteins known to be required for counteracting calcification of connective tissue throughout the body.

Our hypothesis explains the known facts of PXE and also explains why PXE-like symptoms can occur in patients with mutations in the gamma-glutamyl carboxylase gene (encoding the enzyme responsible for protein carboxylase) and in rats treated with vitamin K antagonists. The hypothesis implies that the symptoms of PXE can be prevented or mitigated by providing patients (intravenously) with a form of plasma vitamin K (precursor) that can be used by peripheral tissues.  相似文献   

4.
Pseudoxanthoma elasticum (PXE), a heritable disorder affecting the skin, eyes, and the cardiovascular system, has recently been linked to mutations in the ABCC6 gene on chromosome 16p13.1. The original mutation detection strategy employed by us consisted of the amplification of each exon of the ABCC6 gene with primer pairs placed on the flanking introns, followed by heteroduplex scanning and direct nucleotide sequencing. However, this approach suggested the presence of multiple copies of the 5'-region of the gene when total genomic DNA was used as a template. In this study, we have identified two pseudogenes containing sequences highly homologous to the 5'-end of ABCC6. First, by the use of allele-specific polymerase chain reaction (PCR), two bacterial artificial chromosome (BAC) clones containing a putative pseudogene of ABCC6, designated as ABCC6-psi 1, were isolated from the human BAC library. Sequence analysis of ABCC6-psi 1 revealed it to be a truncated copy of ABCC6, which contains the upstream region and exon 1 through intron 9 of the gene. Secondly, a homology search of a high-throughput sequence database revealed the presence of another truncated copy of ABCC6, which was designated as ABCC6-psi 2, and which was shown to harbor upstream sequences and a segment spanning exon 1 through intron 4 of ABCC6. In addition to several nucleotide differences in the flanking introns and the upstream region, both pseudogenes contain several nucleotide changes in the exonic sequences, including stop codon mutations, which complicate mutation analysis in patients with PXE. Nucleotide differences in flanking introns between these two pseudogenes and ABCC6 allowed us to design allele-specific primers that eliminated the amplification of both pseudogene sequences by PCR and provided reliable amplification of ABCC6-specific sequences only. The use of allele-specific PCR has revealed, thus far, two novel 5'-end PXE mutations, 179del9 and T364R in exons 2 and 9, respectively, and several polymorphisms within the upstream region and exons 1-9 of ABCC6. These strategies facilitate comprehensive analysis of ABCC6 for mutations in PXE.  相似文献   

5.
6.
Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that GACI and PXE are in a closely related spectrum of disease. We used a standardized questionnaire to retrospectively evaluate the phenotype of 92 probands with a clinical history of GACI. We obtained the ENPP1 genotype by conventional sequencing. In those patients with less than two disease-causing ENPP1 mutations, we sequenced ABCC6. We observed that three GACI patients who carried biallelic ENPP1 mutations developed typical signs of PXE between 5 and 8 years of age; these signs included angioid streaks and pseudoxanthomatous skin lesions. In 28 patients, no disease-causing ENPP1 mutation was found. In 14 of these patients, we detected pathogenic ABCC6 mutations (biallelic mutations in eight patients, monoallelic mutations in six patients). Thus, ABCC6 mutations account for a significant subset of GACI patients, and ENPP1 mutations can also be associated with PXE lesions in school-aged children. Based on the considerable overlap of genotype and phenotype of GACI and PXE, both entities appear to reflect two ends of a clinical spectrum of ectopic calcification and other organ pathologies, rather than two distinct disorders. ABCC6 and ENPP1 mutations might lead to alterations of the same physiological pathways in tissues beyond the artery.  相似文献   

7.
8.
9.
Pseudoxanthoma elasticum (PXE) is a heritable elastic tissue disorder recently shown to be attributable to mutations in the ABCC6 ( MRP6) gene. Whereas PXE has been identified in all ethnic groups studied to date, the prevalence of this disease in various populations is uncertain, although often assumed to be similar. A notable exception however is the prevalence of PXE among South African Afrikaners. A previous report has suggested that a founder effect may explain the higher prevalence of PXE in Afrikaners, a European-derived population that first settled in South Africa in the 17th century. To investigate this hypothesis, we performed haplotype and mutational analysis of DNA from 24 South African families of Afrikaner, British and Indian descent. Among the 17 Afrikaner families studied, three common haplotypes and six different disease-causing variants were identified. Three of these mutant alleles were missense variants, two were nonsense mutations and one was a single base-pair insertion. The most common variant accounted for 53% of the PXE alleles, whereas other mutant alleles appeared at lower frequencies ranging from 3% to 12%. Haplotype analysis of the Afrikaner families showed that the three most frequent mutations were identical-by-descent, indicating a founder origin of PXE in this population.  相似文献   

10.
Mutations in the ABCC6 (MRP6) gene cause pseudoxanthoma elasticum (PXE), a rare heritable disorder resulting in the calcification of elastic fibers. In the present study a cDNA encoding a full-length normal variant of ABCC6 was amplified from a human kidney cDNA library, and the protein was expressed in Sf9 insect cells. In isolated membranes ATP binding as well as ATP-dependent active transport by ABCC6 was demonstrated. We found that glutathione conjugates, including leukotriene C(4) and N-ethylmaleimide S-glutathione (NEM-GS), were actively transported by human ABCC6. Organic anions (probenecid, benzbromarone, indomethacin), known to interfere with glutathione conjugate transport of human ABCC1 and ABCC2, inhibited the ABCC6-mediated NEM-GS transport in a specific manner, indicating that ABCC6 has a unique substrate specificity. We have also expressed three missense mutant forms of ABCC6, which have recently been shown to cause PXE. MgATP binding was normal in these proteins; ATP-dependent NEM-GS or leukotriene C(4) transport, however, was abolished. Our data indicate that human ABCC6 is a primary active transporter for organic anions. In the three ABCC6 mutant forms examined, the loss of transport activity suggests that these mutations result in a PXE phenotype through a direct influence on the transport activity of this ABC transporter.  相似文献   

11.
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.  相似文献   

12.
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE.  相似文献   

13.
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.  相似文献   

14.
Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder manifesting with ectopic calcification of peripheral connective tissues, caused by mutations in the ABCC6 gene. Alterations in vitamin K metabolism have been suggested to contribute to the pathomechanisms of the mineralization process. In this study we administered vitamin K or its glutathione conjugate (K3-GSH) into Abcc6-/- mice which recapitulate features of PXE. Oral administration of vitamin K2 in dosages, which vastly exceed the amounts in control diet or the recommended amounts for humans, did not alter the ectopic mineralization in Abcc6-/- mice. Similarly, intravenous administration of K3-GSH did not alter the degree of mineralization. Testing of vitamin K2, K3 and K3-GSH in an in vitro calcification system provided no evidence of mineralization inhibition. Collectively, our data suggest that vitamin K deficiency in the peripheral tissues is not a simple explanation for development of mineral deposits in PXE.  相似文献   

15.
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable ectopic mineralization disorders. Most cases of PXE and many cases of GACI harbor mutations in the ABCC6 gene. There is no effective treatment for these disorders. We explored the potential efficacy of bisphosphonates to prevent ectopic calcification caused by ABCC6 mutations by feeding Abcc6−/− mice with diet containing etidronate disodium (ETD) or alendronate sodium trihydrate (AST) in quantities corresponding to 1x, 5x, or 12x of the doses used to treat osteoporosis in humans. The mice were placed on diet at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks by quantitation of the calcium deposits in the dermal sheath of vibrissae, a progressive biomarker of the mineralization, by computerized morphometry of histopathologic sections and by direct chemical assay of calcium. We found that ETD, but not AST, at the 12x dosage, significantly reduced mineralization, suggesting that selected bisphosphonates may be helpful for prevention of mineral deposits in PXE and GACI caused by mutations in the ABCC6 gene, when combined with careful monitoring of efficacy and potential side-effects.  相似文献   

16.
Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein.  相似文献   

17.
The KCNJ11 and ABCC8 genes encode components of the pancreatic ATP-sensitive potassium (KATP) channel. Previously, we reported association of the KCNJ11 E23K and ABCC8 R1273R G/A variants with type 2 diabetes (T2D) in a small Russian population sample (n=244). Here we replicated association between these genetic variants and T2D in a larger cohort (588 diabetic and 597 non-diabetic subjects). Using the ANCOVA analysis, Odds Ratios (ORs) and relationships between the carriage of a genotype and biochemical parameters of the patients were assessed and then adjusted for confounders (age, gender, HbA1c, hypertension, and obesity). The KCNJ11 K23 variant and the ABCC8 R1273R allele A showed association with higher risk of T2D (adjusted OR of 1.41 and 2.03, P<0.0001, respectively). Diabetic patients homozygous for K/K had lower 2h insulin (Padjusted=0.044). The ABCC8 A/A variant was associated with increased 2h serum insulin in diabetic and non-diabetic subjects (Padjusted=0.027 and 0.033, respectively). The carriage of the risk variant K/K of KCNJ11 E23K or A/A of ABCC8 G/A R1273R was associated with reduced response to nonsulfonylurea and sulfonylurea blockers of the pancreatic KATP channel. Adjusted attributable population risk was 3.0% (KCNJ11 E23K) and 4.8% (ABCC8 G/A) suggesting for the modest effects of these genetic variants on diabetes susceptibility.  相似文献   

18.
19.
Pseudogenes are frequently encountered noncoding sequences with a high sequence similarity to their protein-coding paralogue. For this reason, their presence is often considered troublesome in molecular diagnostics. In pseudoxanthoma elasticum(PXE), a disease predominantly caused by mutations in ATPbinding cassette family C member 6(ABCC6), the presence of two pseudogenes complicates the analysis of sequence data. With whole-exome sequencing(WES) becoming the standard of care in molecular diagnostics, we wanted to evaluate whether this technique is as reliable as gene-specific targeted enrichment analysis for the analysis of ABCC6. We established a PCR-based targeted enrichment and next-generation sequencing testing approach and demonstrated that the ABCC6-specific enrichment combined with the applied mapping algorithm overcomes the complication of ABCC6 pseudogene aspecificities, contrary to WES. We propose a time-and cost-efficient diagnostic strategy for comprehensive and accurate molecular genetic testing of PXE, which is highly automatable.  相似文献   

20.
Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号