首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium botulinum produces botulinum neurotoxin (BoNT) as a large toxin complex associated with nontoxic-nonhemagglutinin (NTNHA) and/or hemagglutinin components. In the present study, high-level expression of full-length (1197 amino acids) rNTNHA from C. botulinum serotype D strain 4947 (D-4947) was achieved in an Escherichia coli system. Spontaneous nicking of the rNTNHA at a specific site was observed during long-term incubation in the presence of protease inhibitors; this was also observed in natural NTNHA. The rNTNHA assembled with isolated D-4947 BoNT with molar ratio 1:1 to form a toxin complex. The reconstituted toxin complex exhibited dramatic resistance to proteolysis by pepsin or trypsin at high concentrations, despite the fact that the isolated BoNT and rNTNHA proteins were both easily degraded. We provide definitive evidence that NTNHA plays a crucial role in protecting BoNT, which is an oral toxin, from digestion by proteases common in the stomach and intestine.  相似文献   

2.
The SNARE super family has three core members, namely SNAP-25, VAMP-2, and syntaxin. SNAP-25 is cleaved by botulinum toxins (BoNTs)/A, /C, and /E, whereas VAMP-2 is the substrate for proteolytic BoNTs/B, /D, /F, and /G. In this study, we constructed a hybrid gene encoding the fusion protein SNVP that encompasses SNAP-25 residues Met1 to Gly206 and VAMP-2 residues Met1 to Lys94. The hybrid gene was cloned in a prokaryotic vector carrying an N-terminal pelB signal sequence and overexpressed in Escherichia coli BL21(DE3) Rosetta. To easily purify the protein, 6× His double-affinity tags were designed as the linker and C terminus of the fusion protein. SNVP was purified to homogeneity by affinity chromatography on a HisTrap FF column and determined to be more than 97% pure by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. N-terminal sequencing of the purified protein showed that signal peptide was successfully removed. The fusion protein SNVP contained the protease cleavage sites of all seven serotypes of BoNTs. SNVP was also proved to be recognized and cleaved by the endopeptidase of BoNTs (BoNT/A–LC, BoNT/B–LC, BoNT/E–LC, and BoNT/G–LC). The novel fusion substrate SNVP exhibited high biological activity under the optimal conditions, suggesting its potential use as a reagent for BoNT assay.  相似文献   

3.
Various human neurogenic hyper-excitability disorders are successfully treated with type A or B BoNT (botulinum neurotoxin). The BoNT/A complex is widely used because of its longer-lasting benefits; also, autonomic side-effects are more often reported for BoNT/B. To establish if this distinct effect of BoNT/B could be exploited therapeutically, BoNT/A was modified so that it would bind the more abundant BoNT/B acceptor in rodents while retaining its desirable persistent action. The advantageous protease and translocation domain of BoNT/A were recombinantly combined with the acceptor-binding moiety of type B [H(C)/B (C-terminal half of BoNT/B heavy chain)], creating the chimaera AB. This purified protein bound the BoNT/B acceptor, displayed enhanced capability relative to type A for intraneuronally delivering its protease, cleaved SNAP-25 (synaptosome-associated protein of 25 kDa) and induced a more prolonged neuromuscular paralysis than BoNT/A in mice. The BA chimaera, generated by substituting H(C)/A (C-terminal half of BoNT/A heavy chain) into BoNT/B, exhibited an extremely high specific activity, delivered the BoNT/B protease via the BoNT/A acceptor into neurons, or fibroblast-like synoviocytes that lack SNAP-25, cleaving the requisite isoforms of VAMP (vesicle-associated membrane protein). Both chimaeras inhibited neurotransmission in murine bladder smooth muscle. BA has the unique ability to reduce exocytosis from non-neuronal cells expressing the BoNT/A-acceptor and utilising VAMP, but not SNAP-25, in exocytosis.  相似文献   

4.
Dolly JO  Wang J  Zurawski TH  Meng J 《The FEBS journal》2011,278(23):4454-4466
A major unmet clinical need exists for long-acting neurotherapeutics to alleviate chronic pain in patients unresponsive to available nonaddictive analgesics. Herein, a new strategy is described for the development of potent and specific inhibitors of the neuronal exocytosis of transmitters and pain mediators that exhibit unique antinociceptive activity. This entailed recombinant production in Escherichia coli of two serotypes of botulinum neurotoxin (BoNT) (BoNT(A) and BoNT(E) ), which are proteins that are known to block the release of transmitters by targeting and entering nerve endings, where their proteases cleave and inactivate a protein, synaptosomal protein of M(r) 25 000 (SNAP-25), that is essential for Ca(2+) -regulated exocytosis. Site-directed mutagenesis of Leu428 and Leu429 in BoNT(A) revealed that the remarkable longevity of its neuroparalytic action is attributable to a dileucine-containing motif. BoNT(E) acts transiently, because it lacks these residues, but is a superior inhibitor of transient receptor potential vanilloid type 1-mediated release of pain peptides from sensory nerves. The advantageous features of each serotype were harnessed by attaching the BoNT(E) protease moiety to an enzymically inactive mutant of BoNT(A) . The resultant purified composite protein could target motoneurons by binding to the BoNT(A) ectoacceptor and persistently produce BoNT(E) -truncated SNAP-25. As this enzyme lasted for more than 1 month (as compared with 5 days for BoNT(E) alone), such a dramatic extension in the lifetime of this BoNT(E) protease is attributable to a stabilizing influence of the BoNT(A) mutant. Most importantly, injecting this novel biotherapeutic into the foot pads of rats resulted in extended amelioration of inflammatory pain. Thus, a new generation of biotherapeutics has been created with the potential to give long-term relief of pain.  相似文献   

5.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

6.
Pseudomonas aeruginosa PD100 capable of producing an extracellular protease was isolated from the soil collected from local area (garbage site) from Shivage market in Pune, India. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 36 kDa on SDS-PAGE. The optimum pH value and temperature range were found to be 8 and 55–60 °C, respectively. The enzyme exhibited broad range of substrate specificity with higher activity for collagen. The enzyme was inhibited with low concentration of Ag2+, Ni2+, and Cu2+. β-Mercaptoethanol was able to inactivate the enzyme at 2.5 mM, suggesting that disulfide bond(s) play a critical role in the enzyme activity. Studies with inhibitors showed that different classes of protease inhibitors, known to inhibit specific proteases, could not inhibit the activity of this protease. Amino acid modification studies data and pKa values showed that Cys, His and Trp were involved in the protease activity. P. aeruginosa PD100 produces one form of protease with some different properties as compared to other reported proteases from P. aeruginosa strains. With respect to properties of the purified protease such as pH optimum, temperature stability with capability to degrade different proteins, high stability in the presences of detergents and chemicals, and metal ions independency, suggesting that it has great potential for different applications.  相似文献   

7.
A recombinant expression vector, pCT7-CHISP6H, was constructed for the secretory expression of mature peptide of chitosanase (mMschito) from Microbacterium sp. OU01. The vector contains several elements, including T7 promoter, signal peptide sequence of mschito, 6 × His-tag sequence and PmaCI restriction enzyme cloning site. In pCT7-CHISP6H, mMschito was fused into signal peptide sequence of mschito gene to construct recombinant plasmid pCT7-CHISP6H-mMschito. The recombinant plasmid was transformed into Escherichia coli BL21(DE3) and then expressed. The recombinant protein was secreted into the Luria–Bertani broth and the chitosanase activity in supernatant of the culture could reach up to 67.56 U/mL. The rmMschito in the broth supernatant was purified using HisTrap™ FF Crude column and the purified rmMschito was shown to be apparent homogeneity by 12 % SDS–PAGE analysis. Detected by 4700 MALDI-TOF–TOF-MS, the molecular weight of the purified rmMschito was 26,758.1875 and it was consistent with the predicted molecular weight. Chitosan (degree of deacetylation of 99 %) was mostly hydrolyzed into chitopentaose, chitotriose, and chitobiose by the purified rmMschito.  相似文献   

8.
Seven small-scale drinking water purification devices were evaluated for their capacity to eliminate botulinum neurotoxin (BoNT) type B from drinking water. Influent water inoculated with toxic Clostridium botulinum cultures and effluent purified water samples were tested for the presence of BoNT by using a standard mouse bioassay and two commercial rapid enzyme immunoassays (EIAs). The water purification devices based on filtration through ceramic or membrane filters with a pore size of 0.2 to 0.4 μm or irradiation from a low-pressure UV-lamp (254 nm) failed to remove BoNT from raw water (reduction of <0.1 log10 units). A single device based on reverse osmosis was capable of removing the BoNT to a level below the detection limit of the mouse bioassay (reduction of >2.3 log10 units). The rapid EIAs intended for the detection of BoNT from various types of samples failed to detect BoNT from aqueous samples containing an estimated concentration of BoNT of 396,000 ng/liter.  相似文献   

9.
Several studies have reported that the citrus red mites Panonychus citri were an important allergen of citrus-cultivating farmers in Jeju Island. The aim of the present study was to purify and assess properties of a cysteine protease from the mites acting as a potentially pathogenic factor to citrus-cultivating farmers. A cysteine protease was purified using column chromatography of Mono Q anion exchanger and Superdex 200 HR gel filtration. It was estimated to be 46 kDa by gel filtration column chromatography and consisted of 2 polypeptides, at least. Cysteine protease inhibitors, such as trans poxy-succinyl-L-leucyl-amido (4-guanidino) butane (E-64) and iodoacetic acid (IAA) totally inhibited the enzyme activities, whereas serine or metalloprotease inhibitors did not affect the activities. In addition, the purified enzyme degraded human IgG, collagen, and fibronectin, but not egg albumin. From these results, the cysteine protease of the mites might be involved in the pathogenesis such as tissue destruction and penetration instead of nutrient digestion.  相似文献   

10.
The most extensively studied ficins have been isolated from the latex of Ficus glabrata and Ficus carica. However the proteases (ficins) from other species are less known. The purification and characterization of a protease from the latex of Ficus racemosa is reported. The enzyme purified to homogeneity is a single polypeptide chain of molecular weight of 44,500 ± 500 Da as determined by MALDI-TOF. The enzyme exhibited a broad spectrum of pH optima between pH 4.5-6.5 and showed maximum activity at 60 ± 0.5 °C. The enzyme activity was completely inhibited by pepstatin-A indicating that the purified enzyme is an aspartic protease. Far-UV circular dichroic spectra revealed that the purified enzyme contains predominantly β-structures. The purified protease is thermostable. The apparent Tm, (mid point of thermal inactivation) was found to be 70 ± 0.5 °C. Thermal inactivation was found to follow first order kinetics at pH 5.5. Activation energy (Ea) was found to be 44.0 ± 0.3 kcal mol−1. The activation enthalpy (ΔH), free energy change (ΔG) and entropy (ΔS) were estimated to be 43 ± 4 kcal mol−1, −26 ± 3 kcal mol−1 and 204 ± 10 cal mol−1 K−1, respectively. Its enzymatic specificity studied using oxidized B chain of insulin indicates that the protease preferably hydrolyzed peptide bonds C-terminal to glutamate, leucine and phenylalanine (at P1 position). The broad specificity, pH optima and elevated thermal stability indicate the protease is distinct from other known ficins and would find applications in many sectors for its unique properties.  相似文献   

11.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species.  相似文献   

12.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

13.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   

14.
The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors.  相似文献   

15.
BackgroundA natural product analog, 3-(4-nitrophenyl)-7H-furo[3,2-g]chromen-7-one, which is a nitrophenyl psoralen (NPP) was found to be an effective inhibitor of botulinum neurotoxin type A (BoNT/A).MethodsIn this work, we performed enzyme inhibition kinetics and employed biochemical techniques such as isothermal calorimetry (ITC) and fluorescence spectroscopy as well as molecular modeling to examine the kinetics and binding mechanism of NPP inhibitor with BoNT/A LC.ResultsStudies of inhibition mechanism and binding dynamics of NPP to BoNT/A light chain (BoNT/A LC) showed that NPP is a mixed type inhibitor for the zinc endopeptidase activity, implying that at least part of the inhibitor-enzyme binding site may be different from the substrate-enzyme binding site. By using biochemical techniques, we demonstrated NPP forms a stable complex with BoNT/A LC. These observations were confirmed by Molecular Dynamics (MD) simulation, which demonstrates that NPP binds to the site near the active site.ConclusionThe NPP binding interferes with BoNT/A LC binding to the SNAP-25, hence, inhibits its cleavage. Based on these results, we propose a modified strategy for designing a molecule to enhance the efficiency of the inhibition against the neurotoxic effect of BoNT.General significanceInsights into the interactions of NPP with BoNT/A LC using biochemical and computational approaches will aid in the future development of effective countermeasures and better pharmacological strategies against botulism.  相似文献   

16.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

17.
A mutanase (α-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 °C to 50 °C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

18.
The specific activities of crude and purified Coprinus cinereus laccase preparations could be enhanced by a factor of 10-12 by activation with copper ions. The copper to protein contents of purified non-activated laccase were 2.3 ± 0.1 compared to 3.3 ± 0.1 in purified activated laccase indicating that only a fraction of the laccase can be activated. Purified laccase not activated with copper ions shows in isoelectric focusing four bands in order of decreasing pI in a ratio 1/5/3/1 where only bands I and II had laccase activity. Purified activated laccase showed only three bands (I, II and III) in the ratio 5/4/1 all with some laccase activity. The pH profile of the activity for activated and non-activated laccase showed identical behavior indicating that the active forms were the same. The change in UV-Vis around 330 nm following the depletion and reconstitution of the enzyme combined with activity measurements supports the reversibility of the selective removal and insertion of copper ions at the type 2 site. The circular dichroism spectrum of activated purified laccase has characteristic changes around 350 nm relative to non-activated laccase indicative of changes at the type 2/type 3 sites. The difference between the electron paramagnetic resonance spectra of non-activated and activated C. cinereus laccase indicates that a fraction of the non-activated purified laccase contained a copper(II) signal with a coupling constant between a type 1 and a type 2 copper(II). This electron paramagnetic resonance signal could be explained by an induced asymmetry in the type 3 site due to a missing type 2 copper ion.  相似文献   

19.
Arndt JW  Chai Q  Christian T  Stevens RC 《Biochemistry》2006,45(10):3255-3262
The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) function through their proteolytic cleavage of one of three proteins (SNAP-25, Syntaxin, and VAMP) that form the SNARE complex required for synaptic vesicle fusion. The different BoNTs have very specific protease recognition requirements, between 15 and 50 amino acids in length depending on the serotype. However, the structural details involved in substrate recognition remain largely unknown. Here is reported the 1.65 A resolution crystal structure of the catalytic domain of BoNT serotype D (BoNT/D-LC), providing insight into the protein-protein binding interaction and final proteolysis of VAMP-2. Structural analysis has identified a hydrophobic pocket potentially involved in substrate recognition of the P1' VAMP residue (Leu 60) and a second remote site for recognition of the V1 SNARE motif that is critical for activity. A structural comparison of BoNT/D-LC with BoNT/F-LC that also recognizes VAMP-2 one residue away from the BoNT/D-LC site provides additional molecular details about the unique serotype specific activities. In particular, BoNT/D prefers a hydrophobic interaction for the V1 motif of VAMP-2, while BoNT/F adopts a more hydrophilic strategy for recognition of the same V1 motif.  相似文献   

20.
A thermostable alkaline protease produced from Bacillus sp. JB 99 exhibited significant keratinolytic and dehairing activity. The enzyme was purified by ammonium sulphate precipitation followed by CM-cellulose and Sephadex G-100 chromatography and resulted in 13.6 fold purification with 23.8% of recovery. The specific activity of purified enzyme was 2989.6 U mg−l. Purified protease had a molecular weight of 29 kDa and appeared as a single band. Gelatin zymogram analysis also revealed a clear hydrolytic zone, which corresponded to the band obtained with SDS-PAGE. The optimum pH and temperature for the keratinolytic activity was pH 11.0 and 70 °C respectively and half life of protease was 70 °C for 4 h. N-terminal amino acid sequence of purified enzyme exhibited extensive homology with other thermostable alkaline proteases and inhibition by PMSF indicated serine type of protease. The Km and Vmax of protease for keratin substrate were 3.8 ± 0.5 mg ml−1 and 15.1 ± 1.6 ??m min−1 mg−1 and casein were 3.3 ± 0.4 mg ml−l and 15.6 ± 0.9 ??m min−1 mg−1 respectively. The enzyme efficiently dehaired buffalo and goat hide without damaging the collagen layer, which makes it a potential candidate for application in leather industry to avoid pollution problem associated with the use of chemicals in the industry. The enzyme also degraded chicken feathers in presence of reducing agent which can help poultry industry in management of keratin-rich waste and obtaining value added products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号