首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood.Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS.Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy.Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer.  相似文献   

2.
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.  相似文献   

3.
Wang K  Liu R  Li J  Mao J  Lei Y  Wu J  Zeng J  Zhang T  Wu H  Chen L  Huang C  Wei Y 《Autophagy》2011,7(9):966-978
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.  相似文献   

4.
5.
Newcastle disease virus (NDV) is an important avian pathogen. We previously reported that NDV triggers autophagy in U251 glioma cells, resulting in enhanced virus replication. In this study, we investigated whether NDV triggers autophagy in chicken cells and tissues to enhance virus replication. We demonstrated that NDV infection induced steady-state autophagy in chicken-derived DF-1 cells and in primary chicken embryo fibroblast (CEF) cells, evident through increased double- or single-membrane vesicles, the accumulation of green fluorescent protein (GFP)-LC3 dots, and the conversion of LC3-I to LC3-II. In addition, we measured autophagic flux by monitoring p62/SQSTM1 degradation, LC3-II turnover, and GFP-LC3 lysosomal delivery and proteolysis, to confirm that NDV infection induced the complete autophagic process. Inhibition of autophagy by pharmacological inhibitors and RNA interference reduced virus replication, indicating an important role for autophagy in NDV infection. Furthermore, we conducted in vivo experiments and observed the conversion of LC3-I to LC3-II in heart, liver, spleen, lung, and kidney of NDV-infected chickens. Regulation of the induction of autophagy with wortmannin, chloroquine, or starvation treatment affects NDV production and pathogenesis in tissues of both lung and intestine; however, treatment with rapamycin, an autophagy inducer of mammalian cells, showed no detectable changes in chicken cells and tissues. Moreover, administration of the autophagy inhibitor wortmannin increased the survival rate of NDV-infected chickens. Our studies provide strong evidence that NDV infection induces autophagy which benefits NDV replication in chicken cells and tissues.  相似文献   

6.
《Autophagy》2013,9(9):966-978
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.  相似文献   

7.
《Autophagy》2013,9(2):166-173
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

8.
Liu WT  Lin CH  Hsiao M  Gean PW 《Autophagy》2011,7(2):166-175
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

9.
Han J  Pan XY  Xu Y  Xiao Y  An Y  Tie L  Pan Y  Li XJ 《Autophagy》2012,8(5):812-825
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.  相似文献   

10.
Autophagy is a tightly regulated mechanism that mediates sequestration, degradation, and recycling of cellular proteins, organelles, and pathogens. Several proteins associated with autophagy regulate host responses to viral infections. Ribonuclease L (RNase L) is activated during viral infections and cleaves cellular and viral single-stranded RNAs, including rRNAs in ribosomes. Here we demonstrate that direct activation of RNase L coordinates the activation of c-Jun N-terminal kinase (JNK) and double-stranded RNA-dependent protein kinase (PKR) to induce autophagy with hallmarks as accumulation of autophagic vacuoles, p62(SQSTM1) degradation and conversion of Microtubule-associated Protein Light Chain 3-I (LC3-I) to LC3-II. Accordingly, treatment of cells with pharmacological inhibitors of JNK or PKR and mouse embryonic fibroblasts (MEFs) lacking JNK1/2 or PKR showed reduced autophagy levels. Furthermore, RNase L-induced JNK activity promoted Bcl-2 phosphorylation, disrupted the Beclin1-Bcl-2 complex and stimulated autophagy. Viral infection with Encephalomyocarditis virus (EMCV) or Sendai virus led to higher levels of autophagy in wild-type (WT) MEFs compared with RNase L knock out (KO) MEFs. Inhibition of RNase L-induced autophagy using Bafilomycin A1 or 3-methyladenine suppressed viral growth in initial stages; in later stages autophagy promoted viral replication dampening the antiviral effect. Induction of autophagy by activated RNase L is independent of the paracrine effects of interferon (IFN). Our findings suggest a novel role of RNase L in inducing autophagy affecting the outcomes of viral pathogenesis.  相似文献   

11.
《Autophagy》2013,9(7):1146-1147
Recent research suggests that microtubule-associated protein 1 light chain 3B (LC3B) confers protection against hypoxia-induced pulmonary hypertension (HPH) by inhibiting proliferation of pulmonary artery (PA) wall cells. We recently demonstrated that 17β-estradiol (E2), a sex hormone with known protective properties in HPH, increases lung LC3-II expression in chronically hypoxic male Sprague-Dawley rats. Stimulatory E2 effects on LC3-II were recapitulated in isolated hypoxic (1% O2 for 48 h), but not room air-exposed primary rat PA endothelial cells (PAECs), and were accompanied by hypoxia-specific inhibitory effects on other parameters involved in proproliferative signaling (MAPK3/ERK1-MAPK1/ERK2 activation, VEGF secretion), as well as inhibitory effects on PAEC proliferation. Taken together, these results suggest that E2 mediates hypoxia-specific antiproliferative effects in PAECs, and that stimulation of autophagy may be one of the underlying mechanisms of E2-mediated protection in HPH. Viewed in the context of previously published data, these results indicate that LC3 1) exerts protective effects in the pathogenesis of HPH, and 2) may represent a potential target for future therapeutic interventions in HPH.  相似文献   

12.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

13.
Recent studies have suggested that free fatty acids stimulate autophagy of pancreatic beta cells. The aim of this study was to verify the free fatty acids (FFA)-induced autophagy and investigate its molecular mechanism. As reported previously, palmitate strongly enhanced the conversion of light chain (LC)3-I to LC3-II, a marker of activation of autophagy in INS-1 beta cells. Palmitate-induced conversion of LC3-I to LC3-II was also observed in neuron-, muscle-, and liver-derived cells. In addition, palmitate induced the formation of typical autophagosomes and autolysosomes and enhanced the degradation rate of long-lived proteins. These results confirmed that palmitate activates autophagic flux in most of the cells. While FFAs reportedly activate several signal transduction pathways in beta cells, palmitate-induced autophagy was blocked by a JNK inhibitor. Although enhanced oxidative stress and endoplasmic reticulum (ER) stress are suspected to mediate FFA-induced activation of JNK1, the induction of autophagy was not associated with changes in molecular markers related to oxidative and endoplasmic reticulum stresses. On the other hand, phosphorylation of double stranded RNA-dependent protein kinase (PKR) paralleled JNK1 activation. Considered together, our study suggested that FFA stimulated functional autophagy possibly through the PKR-JNK1 pathway independent of ER or oxidative stress.  相似文献   

14.
《Autophagy》2013,9(5):812-825
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H2O2-induced viability loss, which specifically evokes an autophagic response. Exposed to H2O2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.  相似文献   

15.
《Autophagy》2013,9(2):84-91
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D, and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

16.
Tim Lahm  Irina Petrache 《Autophagy》2012,8(7):1146-1147
Recent research suggests that microtubule-associated protein 1 light chain 3B (LC3B) confers protection against hypoxia-induced pulmonary hypertension (HPH) by inhibiting proliferation of pulmonary artery (PA) wall cells. We recently demonstrated that 17β-estradiol (E2), a sex hormone with known protective properties in HPH, increases lung LC3-II expression in chronically hypoxic male Sprague-Dawley rats. Stimulatory E2 effects on LC3-II were recapitulated in isolated hypoxic (1% O2 for 48 h), but not room air-exposed primary rat PA endothelial cells (PAECs), and were accompanied by hypoxia-specific inhibitory effects on other parameters involved in proproliferative signaling (MAPK3/ERK1-MAPK1/ERK2 activation, VEGF secretion), as well as inhibitory effects on PAEC proliferation. Taken together, these results suggest that E2 mediates hypoxia-specific antiproliferative effects in PAECs, and that stimulation of autophagy may be one of the underlying mechanisms of E2-mediated protection in HPH. Viewed in the context of previously published data, these results indicate that LC3 1) exerts protective effects in the pathogenesis of HPH, and 2) may represent a potential target for future therapeutic interventions in HPH.  相似文献   

17.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

18.
Little is known about the protein constituents of autophagosome membranes in mammalian cells. Here we demonstrate that the rat microtubule-associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing. Two forms of LC3, called LC3-I and -II, were produced post-translationally in various cells. LC3-I is cytosolic, whereas LC3-II is membrane bound. The autophagic vacuole fraction prepared from starved rat liver was enriched with LC3-II. Immunoelectron microscopy on LC3 revealed specific labelling of autophagosome membranes in addition to the cytoplasmic labelling. LC3-II was present both inside and outside of autophagosomes. Mutational analyses suggest that LC3-I is formed by the removal of the C-terminal 22 amino acids from newly synthesized LC3, followed by the conversion of a fraction of LC3-I into LC3-II. The amount of LC3-II is correlated with the extent of autophagosome formation. LC3-II is the first mammalian protein identified that specifically associates with autophagosome membranes.  相似文献   

19.
《Autophagy》2013,9(6):711-724
Suberoylanilide hydroxamic acid (SAHA) is a newly emerging histone deacetylase inhibitor (HDACi) and has been approved in phase II clinical trials for treating patients with cutaneous T-cell lymphoma. Autophagy is a conserved self-digestion process that degrades cytoplasmic materials and recycles long-lived proteins and organelles within cells. In this study, we demonstrate that SAHA stimulates autophagy in Jurkat T-leukemia cells, which was evidenced by the appearance of autophagic vacuoles, formation of acidic vesicular organelles, recruitment of LC3-II to the autophagosomes and conversion of LC3-I to LC3-II. Moreover, SAHA treatment upregulated expression of Beclin 1 and Atg7 and promoted formation of the Atg12-Atg5 conjugate. Furthermore, inhibition of autophagy by chloroquine (CQ) enhanced SAHA-induced apoptosis. To determine the underlying mechanism of SAHA-induced autophagy, two complementary proteomic approaches (2-DE and SILAC), coupled with ESI-Q-TOF MS/MS analysis are utilized to profile differentially expressed proteins between control and SAHA-treated Jurkat T-leukemia cells. In total, 72 proteins were identified with significant alterations. Cluster analysis of the changed proteins reveal several groups of enzymes associated with energy metabolism, anti-oxidative stress and cellular redox control, which suggested an abnormal reactive oxygen species (ROS) production in SAHA-treated Jurkat T-leukemia cells. These observations were further confirmed by ROS chemiluminescence assay. Mechanistic studies revealed that SAHA-triggered autophagy was mediated by ROS production, which could be attenuated by N-acetyl cysteine (NAC), a ROS inhibitor. Finally, we illustrated that Akt-mTOR signaling, a major suppressive cascade of autophagy, was inactivated by SAHA treatment. Taken together, our study identifies autophagy as a reaction to counter increased ROS and is thus involved as a cellular prosurvival mechanism in response to SAHA treatment.  相似文献   

20.
cAMP enhances endothelial barrier properties and is protective against various inflammatory mediators both in vivo and in vitro. However, the mechanisms whereby cAMP stabilizes the endothelial barrier are largely unknown. Recently we demonstrated that the Rho family GTPase Rac-1 is required for maintenance of endothelial barrier functions in vivo and in vitro. Therefore, in the present study we investigated the effect of forskolin (5 microM)- and rolipram (10 microM)-induced cAMP increase on reduction of barrier functions in response to Rac-1 inhibition by Clostridium sordellii lethal toxin (LT). Forskolin and rolipram treatment blocked LT (200 ng/ml)-induced hydraulic conductivity (Lp) increase in mesenteric microvessels in vivo. Likewise, LT-induced intercellular gap formation in monolayers of cultured microvascular myocardial endothelial (MyEnd) cells and LT-induced loss of adhesion of vascular endothelial cadherin-coated microbeads were abolished. Inhibition of PKA by myristoylated inhibitor peptide (14-22) of PKA (100 microM) reduced the protective effect of cAMP on LT-induced Lp increase in vivo and gap formation in vitro, indicating that the effect of cAMP on Rac-1 inhibition was PKA dependent. Glucosylation assays demonstrated that cAMP prevents inhibitory Rac-1 glucosylation by LT, indicating that one way that cAMP enhances endothelial barrier functions may be by regulating Rac-1 signaling. Our study suggests that cAMP may provide its well-established protective effects at least in part by regulation of Rho proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号