首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductor quantum dots have been used for labeling many biomacromolecules and small molecules, but it remains a challenge to couple it with short active peptides that play critical roles in many physiological processes. Several binding methods for QDs and short peptides have been reported, but all with some limitations in amino acid sequence. In this paper, we report a method for synthesis of quantum dots labeled short peptides that is appropriate to any short peptide. The quantum dots (CdTe)-labeled short peptides were verified and characterized by RP-HPLC. The QDs-labeled peptides were applied to monitor the specific binding between two immune peptides and T cell surface receptors. The quantum dots-labeled immune peptides provide a powerful method for studying immunological functions of these peptides, and an effective strategy for monitoring their complex modulating processes in vivo.  相似文献   

2.
Water-soluble quantum dots for biomedical applications   总被引:6,自引:0,他引:6  
Semiconductor nanocrystals are 1-10nm inorganic particles with unique size-dependent optical and electrical properties due to quantum confinement (so they are also called quantum dots). Quantum dots are new types of fluorescent materials for biological labeling with high quantum efficiency, long-term photostability, narrow emission, and continuous absorption spectra. Here, we discuss the recent development in making water-soluble quantum dots and related cytotoxicity for biomedical applications.  相似文献   

3.
目的探讨量子点荧光技术对人肾癌细胞株(ACHN)中不同HSP进行标记的可行性应用。方法利用量子点的荧光特性,免疫细胞化学方法检测体外培养的ACHN细胞中量子点特异性标记的HSP70、HSP90、HSPgp96的表达情况。结果共聚焦荧光显微镜下可见ACHN细胞中HSP70、HSP90、HSPgp96均有明显表达,呈现均匀分布的橙红色强荧光,且量子点在持续激发30分钟后无荧光淬灭发生。结论量子点荧光标记技术能够对不同HSP进行标记,且与传统的标记方法相比具有显著优点,可作为一种新型的检测技术应用于科研及临床标记检测中。  相似文献   

4.
Globally, over 33.2 million people who mostly live in developing countries with limited access to the appropriate medical care suffer from the human immunodeficiency virus (HIV) infection. We developed an on-chip HIV capture and imaging method using quantum dots (Qdots) from fingerprick volume (10 μl) of unprocessed HIV-infected patient whole blood in anti-gp120 antibody-immobilized microfluidic chip. Two-color Qdots (Qdot525 and Qdot655 streptavidin conjugates) were used to identify the captured HIV by simultaneous labeling the envelope gp120 glycoprotein and its high-mannose glycans. This dual-stain imaging technique using Qdots provides a new and effective tool for accurate identification of HIV particles from patient whole blood without any pre-processing. This on-chip HIV capture and imaging platform creates new avenues for point-of-care diagnostics and monitoring applications of infectious diseases.  相似文献   

5.
量子点在生物学中的研究进展   总被引:6,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

6.
恶性胶质瘤年发病率约为5/100,000。美国每年有超过14,000例的新发恶性脑胶质瘤患者。治疗主要以手术治疗为主,手术肿瘤的切除程度影响患者的预后。外科手术治疗脑肿瘤需要精确定位脑肿瘤组织在正常脑组织中的位置以便能够获得精确的组织活检和肿瘤的完全切除。量子点是稳定存在的,产生荧光的可视化半导体纳米晶体。静脉注射量子点伴随着网状内皮系统和巨噬细胞的隔离。巨噬细胞可渗入到肿瘤组织并且能够吞噬通过静脉注射的光量子来产生可视化的肿瘤标记。通过巨噬细胞介导,将光量子运输至肿瘤组织展现了一种新兴技术来标记术前肿瘤组织。由于肿瘤组织中的光量子可以被光学成像和光谱学工具来探测,因此在脑肿瘤组织活检和切除中可以为外科医生提供可视化得实时反馈。  相似文献   

7.
Lei Y  Tang H  Yao L  Yu R  Feng M  Zou B 《Bioconjugate chemistry》2008,19(2):421-427
Fluorescent quantum dots have great potential in cellular labeling and tracking. Here, PEG encapsulated CdSe/ZnS quantum dots have been conjugated with Tat peptide, and introduced into living mesenchymal stem cells. The Tat peptide conjugated quantum dots in mesenchymal stem cells were assessed by fluorescent microscopy, laser confocal microscope and. flow cytometry. The result shows that Tat peptide conjugated quantum dots could enter mesenchymal stem cells efficiently. The Tat-quantum dots labeled stem cells were further injected into the tail veins of NOD/SCID beta2 M null mice, and the tissue distribution of these labeled cells in nude mice were examined with fluorescence microscope. The result shows that characteristic fluorescence of quantum dots was observed primarily in the liver, the lung and the spleen, with little or no quantum dots accumulation in the brain, the heart, or the kidney.  相似文献   

8.
Nonspecific binding is a frequently encountered problem with fluorescent labeling of tissue cultures when labeled with quantum dots. In these studies various cell lines were examined for nonspecific binding. Evidence suggests that nonspecific binding is related to cell type and may be significantly reduced by functionalizing quantum dots with poly(ethylene glycol) ligands (PEG). The length of PEG required to give a significant reduction in nonspecific binding may be as short as 12-14 ethylene glycol units.  相似文献   

9.
Li Z  Wang K  Tan W  Li J  Fu Z  Ma C  Li H  He X  Liu J 《Analytical biochemistry》2006,354(2):169-174
Thioglycolic-acid-stabilized CdTe quantum dots, synthesized directly in aqueous solution, are successfully conjugated with biotin and polyethylene glycol. Using these conjugates, we report the development of this kind of water-soluble quantum dot for immunofluorescent labeling of cancer cells. The results show that these conjugates have very low nonspecific binding and good stability against photobleaching, enabling them to be applied in many biological fields, such as cellular labeling, intracellular tracking, and other imaging applications.  相似文献   

10.
The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting.  相似文献   

11.
Fluorescence microscopy provides a powerful method to directly observe single enzymes moving along a DNA held in an extended conformation. In this work, we present results from single EcoRV enzymes labeled with quantum dots which interact with DNA manipulated by double optical tweezers. The application of quantum dots facilitated accurate enzyme tracking without photobleaching whereas the tweezers allowed us to precisely control the DNA extension. The labeling did not affect the biochemical activity of EcoRV checked by directly observing DNA digestion on the single molecule level. We used this system to demonstrate that during sliding, the enzyme stays in close contact with the DNA. Additionally, slight overstretching of the DNA resulted in a significant decrease of the 1D diffusion constant, which suggests that the deformation changes the energy landscape of the sliding interaction. Together with the simplicity of the setup, these results demonstrate that the combination of optical tweezers with fluorescence tracking is a powerful tool for the study of enzyme translocation along DNA.  相似文献   

12.
目的量子点是近年来发展起来的一种新型的荧光纳米材料,与传统的材料相比具有独特的性质,所以在生物传感器、实时追踪、多色标记及成像等方面有着广泛的应用。本文主要对量子点在细菌标记和抗菌等方面的应用进行了综述。  相似文献   

13.
This work demonstrated the feasibility of detecting 250zM Escherichia coli O157:H7 eaeA target DNA by using a magnetic bead-based DNA detection assay with designed labeling strategy within 40-60min. The magnetic beads were used as the solid support for the binding probe and isolated the target DNA from the sample. The detection signals could be amplified from the multi-layers biotin-streptavidin conjugated quantum dots based on binding with specific designed biotinlyted linker. This assay method would provide a simple, rapid, and ultra-sensitive detection method for DNA or other biomolecular analysis.  相似文献   

14.
Two-photon excitation fluorescence cross-correlation spectroscopy (TPE-XCS) is a very suitable method for studying interactions of two distinctly labeled fluorescent molecules. As such, it lends itself nicely to the study of ligand-receptor interactions. By labeling the ligand with one color of fluorescent dye and the receptor with another, it is possible to directly monitor ligand binding rather than inferring binding by monitoring downstream effects. One challenge of the TPE-XCS approach is that of separating the signal due to the receptor from that of the ligand. Using standard organic fluorescent labels there is almost inevitably spectral cross talk between the detection channels, which must be accounted for in TPE-XCS data analysis. However, using quantum dots as labels for both ligand and receptor this limitation can be alleviated, because of the dot's narrower emission spectra. Using solely quantum dots as fluorescent labels is a novel approach to TPE-XCS, which may be generalizable to many pairs of interacting biomolecules after the proof of principle and the assessment of limitations presented here. Moreover, it is essential that relevant pharmacological parameters such as the equilibrium dissociation constant, K(d), can be easily extracted from the XCS data with minimal processing. Herein, we present a modified expression for fractional occupancy based on the auto- and cross-correlation decays obtained from a well-defined ligand-receptor system. Nanocrystalline semiconductor quantum dots functionalized with biotin (lambda(em) = 605 nm) and streptavidin (lambda(em) = 525 nm) were used for which an average K(d) value of 0.30 +/- 0.04 x 10(-9) M was obtained (cf. native system approximately 10(-15)). Additionally, the off-rate coefficient (k(off)) for dissociation of the two quantum dots was determined as 5 x 10(-5) s(-1). This off-rate is slightly larger than for native biotin-streptavidin (5 x 10(-6) s(-1)); the bulky nature of the quantum dots and restricted motion/orientation of functionalized dots in solution can account for differences in the streptavidin-biotin mediated dot-dot binding compared with those for native streptavidin-biotin.  相似文献   

15.
The association of quantum dots (QDs) to carbohydrate-binding proteins – lectins – has revealed novel biotechnological strategies for glycobiology studies. Herein, carboxyl-coated QDs were conjugated by adsorption to Cramoll, a glucose/mannose lectin obtained from Cratylia mollis seeds. Then, the conjugates were optically characterized and used to evaluate the surface carbohydrate profiles of four Aeromonas species isolated from the tambaqui fish (Colossoma macropomum). All the Aeromonas cells were labeled by the conjugate. Inhibition assays with methyl-α-D-mannopyranoside and mannan were performed to confirm the labeling specificity. Cramoll-QDs conjugates presented high brightness and showed similar absorption and emission profiles compared to bare QDs. According to the labeling pattern of Aeromonas spp. by the conjugate, results suggested that A. jandaei and A. dhakensis strains may harbor a higher content of more complex glucose/mannose surface glycans, with more available sites for Cramoll-QDs interaction, than A. hydrophila and A. caviae. Noteworthy, the Cramoll-QDs conjugates demonstrated to be potential tools for bacterial characterization based on superficial carbohydrate detection.  相似文献   

16.
The usefulness of quantum dots for the immunofluorescent detection of surface antigens on the lymphoid cells has been studied. To optimize quantum dots detection we have upgraded fluorescent microscope that allows obtaining multiple images from different quantum dots from one section. Specimens stained with quantum dots remained stable over two weeks and practically did not bleach under mercury lamp illumination during tens of minutes. Direct conjugates of primary mouse monoclonal antibodies with quantum dots demonstrated high specificity and sufficient sensitivity in the case of double staining on the frozen sections. Because of the high stability of quantum dots' fluorescence, this method allows to analyze antigen coexpression on the lymphoid tissue sections for diagnostic purposes. The spillover of fluorescent signals from quantum dots into adjacent fluorescent channels, with maxima differing by 40 nm, did not exceed 8%, which makes the spectral compensation is practically unnecessary.  相似文献   

17.
18.
半导体量子点具有长时间、多目标和灵敏度高等独特的光化学性质,这些特性使量子点成为细胞标记和生物应用中得到了广泛的应用。利用量子点目标定位癌细胞,对于寻找癌变部位具有指导的作用。近年来,利用量子点作为光动力学治疗癌症的能量供体也得到了一定的研究。简单地介绍了量子点独特的光学性质,并从量子点标记癌细胞、可视化癌细胞表面功能和在光动力学治疗癌症等方面综述了量子点在癌症诊断和治疗中的应用。  相似文献   

19.
K+ channels are widely expressed in eukaryotic and prokaryotic cells, where one of their key functions is to set the membrane potential. Many K+ channels are tetramers that share common architectural properties. The crystal structure of bacterial and mammalian K+ channels has been resolved and provides the basis for modeling their three-dimensional structure in different functional states. This wealth of information on K+ channel structure contrasts with the difficulties to visualize single K+ channel proteins in their physiological environment. We describe a method to identify single Ca2+-activated K+ channel molecules in the plasma membrane of migrating cells. Our method is based on dual-color labeling with quantum dots. We show that >90% of the observed quantum dots correspond to single K+ channel proteins. We anticipate that our method can be adopted to label any other ion channel in the plasma membrane on the single molecule level. Ca2+-activated K+ channel; migration  相似文献   

20.
We have developed a simultaneous detection method for two common mutations in the epidermal growth factor receptor gene based on the fluorescence quenching phenomenon caused by aggregation of CdSe quantum dots. For detection of the in-frame deletion in exon 19 and the L858R point mutation in exon 21, water-soluble CdSe quantum dots with two sizes were functionalized using four different types of probe oligonucleotides. Addition of target oligonucleotides with the deletion mutation in exon 19 into the suspensions caused crosslinking-induced aggregation of green-emitting quantum dots, followed by the fluorescence quenching while that with the L858R point mutation resulted in aggregation of yellow-emitting quantum dots. In addition, targets with both deletion and point mutations caused aggregation of both green- and yellow-emitting quantum dots. This method allows a simultaneous detection of mutations in exon 19 and 21 of EGFR gene in a single experiment. We found that minimum mutant concentration that could be detected by this method was as low as 2% for deletion mutation, and 5% for point mutation. PCR products of EGFR gene were also used to confirm that our method could be used to detect mutation in amplified DNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号