首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechano-transduction was studied in wildtype and focal adhesion (FA) protein-deficient mouse embryonic fibroblasts (MEFs). Using a cell stretcher, we determined the effect of stretch on cell morphology, apoptosis, and phosphorylation of ERK1/2. After 20% cyclic, uniaxial stretch, FA-deficient MEFs showed morphological changes and levels of apoptosis of the order: focal adhesion kinase > p130Cas > vinculin compared to wildtype cells. ERK1/2 phosphorylation peaked in wildtype cells at around 10 min, and in all FA-deficient cells at around 5 min. The relative change in strain energy of FA-deficient cells compared to wildtype cells was of the order: vinculin > FAK > p130Cas. Taken together, FAK and p130Cas are more important in the stretch-mediated downstream signaling and cell survival pathway, while vinculin is more critical in maintaining cell contractility.  相似文献   

2.
Summary Upon cell adhesion to extracellular matrix proteins, focal adhesion kinase (FAK) rapidly undergoes autophosphorylation on its Tyr-397 which consequently serves as a binding site for the Src homology 2 domains of the Src family protein kinases and several other intracellular signaling molecules. In this study, we have attempted to examine the effect of the FAK Y397F mutant on v-Src-stimulated cell transformation by establishing an inducible expression of the Y397F mutant in v-Src-transformed FAK-null (FAK−/−) mouse embryo fibroblasts. We found that the FAK Y397F mutant had both positive and negative effects on v-Src-stimulated cell transformation; it promoted v-Src-stimulated invasion, but on the other hand it inhibited the v-Src-stimulated anchorage-independent cell growth in vitro and tumor formation in vivo . The positive effect of the Y397F mutant on v-Src-stimulated invasion was correlated with an increased expression of matrix metalloproteinase-2, both of which were inhibited by the specific phosphatidylinositol 3-kinase inhibitor wortmannin or a dominant negative mutant of AKT, suggesting a critical role for the phosphatidylinositol 3-kinase/AKT pathway in both events. However, the expression of the Y397F mutant rendered v-Src-transformed FAK−/− cells susceptible to anoikis, correlated with suppression on v-Src-stimulated activation of ERK and AKT. In addition, under anoikis stress, the induction of the Y397F mutant in v-Src-transformed FAK−/− cells selectively led to a decrease in the level of p130Cas, but not other focal adhesion proteins such as talin, vinculin, and paxillin. These results suggest that FAK may increase the susceptibility of v-Src-transformed cells to anoikis by modulating the level of p130Cas.  相似文献   

3.
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+ or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction. tissue transfection; plasmids; cytoskeleton; talin; immunofluorescence  相似文献   

4.
Adenosine and/or homocysteine causes endothelial cell apoptosis, a mechanism requiring protein tyrosine phosphatase (PTPase) activity. We investigated the role of focal adhesion contact disruption in adenosine-homocysteine endothelial cell apoptosis. Analysis of focal adhesion kinase (FAK), paxillin, and vinculin demonstrated disruption of focal adhesion complexes after 4 h of treatment with adenosine-homocysteine followed by caspase-induced proteolysis of FAK, paxillin, and p130(CAS). No significant changes were noted in tyrosine phosphorylation of FAK or paxillin. Pretreatment with the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone prevented adenosine-homocysteine-induced DNA fragmentation and FAK, paxillin, and p130(CAS) proteolysis. Asp-Glu-Val-Asp-ase activity was detectable in endothelial cells after 4 h of treatment with adenosine-homocysteine. The PTPase inhibitor sodium orthovanadate did not prevent endothelial cell retraction or FAK, paxillin, or vinculin redistribution. Sodium orthovanadate did block adenosine-homocysteine-induced FAK, paxillin, and p130(CAS) proteolysis and Asp-Glu-Val-Asp-ase activity. Thus disruption of focal adhesion contacts and caspase-induced degradation of focal adhesion contact proteins occurs in adenosine-homocysteine endothelial cell apoptosis. Focal adhesion contact disruption induced by adenosine-homocysteine is independent of PTPase or caspase activation. These studies demonstrate that disruption of focal adhesion contacts is an early, but not an irrevocable, event in endothelial cell apoptosis.  相似文献   

5.
Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell-matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.  相似文献   

6.
In many malignant cells, both the anchorage requirement for survival and the function of the p53 tumor suppressor gene are subverted. These effects are consistent with the hypothesis that survival signals from extracellular matrix (ECM) suppress a p53-regulated cell death pathway. We report that survival signals from fibronectin are transduced by the focal adhesion kinase (FAK). If FAK or the correct ECM is absent, cells enter apoptosis through a p53-dependent pathway activated by protein kinase C λ/ι and cytosolic phospholipase A2. This pathway is suppressible by dominant-negative p53 and Bcl2 but not CrmA. Upon inactivation of p53, cells survive even if they lack matrix signals or FAK. This is the first report that p53 monitors survival signals from ECM/FAK in anchorage- dependent cells.  相似文献   

7.
Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localizing FAK to focal adhesions. We have determined the crystal structure of FAT and show that it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. We show by mutagenesis that paxillin binding involves two hydrophobic patches on opposite faces of the bundle and propose a model in which two LD motifs of paxillin adopt amphipathic helices that augment the hydrophobic core of FAT, creating a six-helix bundle.  相似文献   

8.
Hic-5 is a paxillin homologue with four LIM domains in its C-terminal region, localized mainly in focal adhesions in normal fibroblasts. Hic-5 is also known to associate with focal adhesion kinase (FAK) or the related CAKbeta, and with vinculin. In the present study, we examined changes in Hic-5 and paxillin protein levels in primary mouse embryo fibroblasts (MEF) during mortal and immortal stages. The Hic-5 level was markedly decreased when cells became immortalized, whereas that of paxillin was increased. The vinculin level was not changed significantly. Hic-5 was mainly localized in focal adhesion plaques of mortal MEF but was localized in the nuclear periphery in the immortalized MEF; the number of focal adhesion plaques was decreased in these cells. Mouse Hic-5 contains three LD domains in its N-terminal half, and the first LD domain (LD1) appears to be involved in interaction with FAK. However, this interaction was not essential for recruitment of Hic-5 to focal adhesions, since its subcellular localization was similar in FAK(-/-) cells. Forced expression of Hic-5 decreased colony forming ability of MEF from FAK(+/+) mice, but not of FAK(-/-) cells. These observations suggested the involvement of Hic-5 in determination of cellular proliferative capacity in collaboration with other cytoskeletal components.  相似文献   

9.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.Key words: fibronectin, DFMO, polyamines, FAK, Src  相似文献   

10.
Assembly of a fibronectin (FN) matrix is a multistep process which influences a number of cellular functions including intracellular cytoskeletal organization and signaling responses. We have previously reported on a recombinant FN (recFN), FNΔIII1–7, which differs from native FN in its rate of fibril formation. To determine the intracellular consequences of a delay in assembly, we compared the distribution of cytoskeletal proteins during the formation of native and recFN matrices by immunofluorescence at various time points. CHOα5 cell cytoskeleton was reorganized in response to both native and recFN matrix formation. Assembly of native FN induced a rapid reorganization of actin into stress fibers and colocalization of α5131 integrin, focal adhesion kinase (FAK), vinculin, and paxillin to regions of cell-matrix contact. α5β1 integrins and FAK are also clustered upon binding of FNΔIII1–7 to cells but actin reorganization and focal adhesion formation are delayed and appear to be dependent on the formation of FNΔIII1–7 fibrils. These results suggest that the structural framework of the matrix plays an important role in the ability of FN to initiate intracellular responses.  相似文献   

11.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK auto-phosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.  相似文献   

12.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

13.
Vinculin couples as a focal adhesion protein the extracellular matrix (ECM) through integrins to the actomyosin cytoskeleton. During the last years vinculin has become the focus of cell mechanical measurements and a key protein regulating the transmission of contractile forces. In earlier reports vinculin has been described as an inhibitor of cell migration on planar substrates, because knock-out of vinculin in F9 mouse embryonic carcinoma cells and mouse embryonic fibroblasts showed increased cell motility on 2D substrates. The role of vinculin in cell invasion through a 3D extracellular matrix is still fragmentarily investigated. This review presents vinculin in its role as a regulator of cellular mechanical functions. Contractile force generation is reduced when vinculin is absent, or enhanced when vinculin is present. Moreover, the generation of contractile forces is a prerequisite for cell invasion through a dense 3D ECM, where the pore-size is smaller than the diameter of the cell nucleus (<2 μm). Measurements of cell’s biophysical properties will be presented. In summary, vinculin’s leading role among focal adhesion proteins in regulating the mechanical properties of cells will be discussed.  相似文献   

14.
Previous studies have shown that collagen gel overlay induced selective proteolysis of focal adhesion complex proteins in Madin-Darby canine kidney (MDCK) cells. In this study, we examined whether morphological and biochemical changes were present in cells cultured on collagen gel. We found that focal adhesion complex proteins, including focal adhesion kinase (FAK), talin, paxillin, and p130cas, but not vinculin, were decreased within 1 h when MDCK cells were cultured on collagen gel. Collagen gel-induced selective decrease of focal adhesion proteins was observed in all lines of cells examined, including epithelial, fibroblastic, and cancer cells. Matrigel also induced selective down-regulation of focal adhesion proteins. However, cells cultured on collagen gel- or matrigel-coated dishes did not show any changes of focal adhesion proteins. These data suggest that the physical nature of the gel, i.e. the rigidity, is involved in the expression of focal adhesion proteins. The collagen gel-induced down-regulation of focal adhesion complex proteins was caused by reduction of protein synthesis and activation of proteases such as calpain. Overexpression of a dominant negative mutant of discoidin domain receptor 1 (DDR1) or FAK-related non-kinase (FRNK) did not prevent collagen gel-induced down-regulation of the focal adhesion complex protein, whereas an anti-alpha2beta1 integrin-neutralizing antibody completely blocked it. Taken together, our results indicate that the rigidity of collagen gel controls the expression of focal adhesion complex proteins, which is mediated by alpha2beta1 integrin but not DDR1.  相似文献   

15.
16.
The signals involved in restitution during mucosal healing are poorly understood. We compared focal adhesion kinase (FAK) and paxillin protein and phosphorylation, extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 activation, as well as FAK and paxillin organization in static and migrating human intestinal Caco-2 cells on matrix proteins and anionically derivatized polystyrene dishes (tissue culture plastic). We also studied effects of FAK, ERK, and p38 blockade in a monolayer-wounding model. Compared with static cells, cells migrating across matrix proteins matrix-dependently decreased membrane/cytoskeletal FAK and paxillin and cytosolic FAK. Tyrosine phosphorylated FAK and paxillin changed proportionately to FAK and paxillin protein. Conversely, cells migrating on plastic increased FAK and paxillin protein and phosphorylation. Migration matrix-dependently activated p38 and inactivated ERK1 and ERK2. Total p38, ERK1, and ERK2 did not change. Caco-2 motility was inhibited by transfection of FRNK (the COOH-terminal region of FAK) and PD-98059, a mitogen-activated protein kinase-ERK kinase inhibitor, but not by SB-203580, a p38 inhibitor, suggesting that FAK and ERK modulate Caco-2 migration. In contrast to adhesion-induced phosphorylation, matrix may regulate motile intestinal epithelial cells by altering amounts and distribution of focal adhesion plaque proteins available for phosphorylation as well as by p38 activation and ERK inactivation. Motility across plastic differs from migration across matrix.  相似文献   

17.
The formation of focal adhesions governs cell shape and function; however, there are few measurements of the binding kinetics of focal adhesion proteins in living cells. Here, we used the fluorescence recovery after photobleaching (FRAP) technique, combined with mathematical modeling and scaling analysis to quantify dissociation kinetics of focal adhesion proteins in capillary endothelial cells. Novel experimental protocols based on mathematical analysis were developed to discern the rate-limiting step during FRAP. Values for the dissociation rate constant kOFF ranged over an order of magnitude from 0.009 ± 0.001/s for talin to 0.102 ± 0.010/s for FAK, indicating that talin is bound more strongly than other proteins in focal adhesions. Comparisons with in vitro measurements reveal that multiple focal adhesion proteins form a network of bonds, rather than binding in a pair-wise manner in these anchoring structures in living cells.  相似文献   

18.
Tetraspanins (or proteins from the transmembrane 4 superfamily, TM4SF) form membrane complexes with integrin receptors and are implicated in integrin-mediated cell migration. Here we characterized cellular localization, structural composition, and signaling properties of alpha3beta1-TM4SF adhesion complexes. Double-immunofluorescence staining showed that various TM4SF proteins, including CD9, CD63, CD81, CD82, and CD151 are colocalized within dot-like structures that are particularly abundant at the cell periphery. Differential extraction in conjunction with chemical cross-linking indicated that the cell surface fraction of alpha3beta1-TM4SF protein complexes may not be directly linked to the cytoskeleton. However, in cells treated with cytochalasin B alpha3beta1-TM4SF protein complexes are relocated into intracellular vesicles suggesting that actin cytoskeleton plays an important role in the distribution of tetraspanins into adhesion structures. Talin and MARCKS are partially codistributed with TM4SF proteins, whereas vinculin is not detected within the tetraspanin-containing adhesion structures. Attachment of serum-starved cells to the immobilized anti-TM4SF mAbs induced dephosphorylation of focal adhesion kinase (FAK). On the other hand, clustering of tetraspanins in cells attached to collagen enhanced tyrosine phosphorylation of FAK. Furthermore, ectopic expression of CD9 in fibrosarcoma cells affected adhesion-induced tyrosine phosphorylation of FAK, that correlated with the reorganization of the cortical actin cytoskeleton. These results show that tetraspanins can modulate integrin signaling, and point to a mechanism by which TM4SF proteins regulate cell motility.  相似文献   

19.
《The Journal of cell biology》1996,134(5):1323-1332
Integrins alpha v beta 3 and alpha v beta 5 both mediate cell adhesion to vitronectin yet trigger different postligand binding events. Integrin alpha v beta 3 is able to induce cell spreading, migration, angiogenesis, and tumor metastasis without additional stimulators, whereas alpha v beta 5 requires exogenous activation of protein kinase C (PKC) to mediate these processes. To investigate this difference, the ability of beta 3 or beta 5 to induce colocalization of intracellular proteins was assessed by immunofluorescence in hamster CS-1 melanoma cells. We found that alpha v beta 5 induced colocalization of talin, alpha-actinin, tensin, and actin very weakly relative to alpha v beta 3. alpha v beta 5 was able to efficiently induce colocalization of focal adhesion kinase (FAK); however, it was unable to increase phosphorylation of FAK on tyrosine. Activation of PKC by adding phorbol ester to alpha v beta 5-expressing cells induced spreading, increased colocalization of alpha-actinin, tensin, vinculin, p130cas and actin, and triggered tyrosine phosphorylation of FAK. Unexpectedly, talin colocalization remained low even after activation of PKC. Treatment of cells with the PKC inhibitor calphostin C inhibited spreading and the colocalization of talin, alpha-actinin, tensin, and actin for both alpha v beta 3 and alpha v beta 5. We conclude that PKC regulates localization of cytoskeletal proteins and phosphorylation of FAK induced by alpha v beta 5. Our results also show that FAK can be localized independent of its phosphorylation and that cells can spread and induce localization of other focal adhesion proteins in the absence of detectable talin.  相似文献   

20.
《The Journal of cell biology》1996,135(4):1109-1123
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号