首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant science》1988,56(3):253-260
Since the host-specific toxins of Alternaria alternata f. sp. lycopersici play an important role in pathogenesis, they potentially could be applied as selective agents in in vitro selection at the cellular level for disease resistance. Prerequisite for this is that sensitivity to the Alternaria alternata f.sp. lycopersici pathotoxins is manifest at the cellular level. To gain insight into cellular effects of AAL-toxins and into the mechanisms of plant insensitivity to AAL-toxins, effects of AAL-toxins on leaves, leaf discs, roots, calli, suspension cells, minicalli and protoplasts of susceptible and resistant tomato genotypes were studied. In leaves of susceptible genotypes, toxins cause severe necrosis, while in leaves of resistant genotypes necrosis was never observed. Inhibition effects of toxins were observed at all other levels in susceptible and resistant genotypes: toxins inhibited shoot induction on leaf discs, root growth and growth of calli, suspension cells and protoplasts. This indicates a cellular site for AAL-toxins. Differences in sensitivity to AAL-toxins between susceptible and resistant genotypes were observed in leaves and roots, but were not observed during shoot induction on leaf discs, in calli, suspension cells and protoplasts. However, differences in sensitivity to AAL-toxins in roots were at least 20 times less than in leaves. Therefore insensitivity seems related to a higher level of tomato plant differentiation and is most pronounced in leaves.  相似文献   

2.
Protoplasts from a total of thirty-six genotypes of Brassica species – B. napus, B. campestris (syn. B. rapa), B. juncea, and three distant relatives, Orychophragmus violaceus, Isatis indigotica and Xinjiang wild rape – were analysed for shoot regeneration using a feeder culture system. With the exception of B. campestris and Xinjiang wild rape, some genotypes of all the species could regenerate plants with high efficiency (above 20% of isolated calli initiating shoots). Several genotypes with high regeneration ability were elite breeding lines. Culture conditions as well as genotype had a significant impact on shoot regeneration frequency. In particular, silver nitrate added to the regeneration medium at doses of 6 and 30 μM improved shoot regeneration frequency to 25.4% and 52.2% of isolated calli, respectively, compared to 7.3% percent shoot regeneration without silver nitrate in seven responsive genotypes. Addition of silver nitrate to the regeneration medium also induced shoot regeneration in non-responsive genotypes. Intact plants could be obtained within three months from protoplast isolation in the regenerative genotypes using the current culture system. Advantages of mesophyll protoplasts as compared to protoplasts isolated from hypocotyls for genetic manipulation in Brassica species are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Mesophyll protoplasts from in vitro grown plants of a cytoplasmic albino mutant ofLycopersicon esculentum cv. Large Red Cherry were isolated with yields between 0.4 to 4.4 × 106 protoplasts per gram leaf tissue. Success in the culture of these protoplasts was dependent on embedding of the protoplasts in 100 µ1 agarose droplets 0.6% (w/v). A plating efficiency of 4.0% was obtained when the protoplasts were cultured in TM-2 medium with sucrose concentrations of 8.7 to 9.6% (w/v) resulting in an osmotic pressure of 432 to 469 mOsmol kg-1. After 14 days of protoplast culture, microcalli with a diameter of 3 mm were observed. After 3 weeks, macrocalli were obtained which were transferred to regeneration medium. Regeneration of shoot primordia, with a frequency of 19%, was obtained on TM-4 medium supplemented with 1% (w/v) sucrose. The first shoot primordia were visible 10 weeks after protoplast plating. For development of the shoot primordia into shoots it was necessary to increase the sucrose concentration to 6% (w/v). Eight out of eleven regenerants were diploid (2n = 2x = 24); the other three were tetraploid. Efficient regeneration of mesophyll albino protoplasts from tomato opens the way to select at the cellular level for the chloroplast transfers.  相似文献   

4.
Summary The behaviour of eleven Saintpaulia ionantha (H. Wendl.) genotypes in protoplast culture was compared. Isolation of protoplasts from young shootlets regenerated in vitro on leaf explants, yielded 0.7 to 1.8 × 106 protoplasts per gram fresh weight. In all cultivars and breeding lines tested, cell divisions were observed. The mean division frequencies varied between 1.0 and 5.0% after 14 days, and between 6.4 and 13.8% after 24 days of culture. In ten genotypes callussing and shoot regeneration were achieved. The difference between the genotypes in shoot regeneration rate, between 2 and 68%, was more pronounced. The comparison of four cytokinins indicated hat thidiazuron was most effective for shoot regeneration, but often resulted in poorer shoot quality than benzylaminopurine.Abbreviations BAP (6-Benzylaminopurine) - IAA (In-dole-3-acetic acid) - NAA (-Naphthaleneacetic acid) - TDZ (Thidiazuron = 1-Phenyl-3-(1,2,3-thiadiazol-5-yl)-urea) - 2iP (6-(,-dimethylallylamino)-purine)  相似文献   

5.
A protocol for obtaining regenerated fertile plants from mesophyll protoplasts of four ecotypes (Col C24, Per-1, Bur-0, Landsberg erecta) and two marker lines (M4 and M10) of Ardbidopsis thaliana is described. The different lines showed plating efficiencies between 1.0 and 3.9% using Nitsch medium or this medium supplemented with coconut water. For the differentiation of callus into normal shoots a single shoot regeneration medium was applicable to all ecotypes, but depending on the line other regeneration media showed to be more suitable. The results indicated that the protoplast culture procedure is applicable, with minor modifications, to all tested genotypes but the most suitable shoot regeneration medium should be established for each A. thaliana line.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzyl-aminopurine - IAA indole-3-acetic acid - IPA isopentenyladenine - IPAR isopentenyladenosine - MES 2-[N Morpholino]ethanesulfonic acid - MS Murashige and Skoog - NAA naphthaleneacetic acid  相似文献   

6.
A protocol is described for high frequency plant regeneration from isolated leaf protoplasts of several genotypes of the wild tomato species Lycopersicon hirsutum f. hirsutum based on modified tomato protoplast culture methods. Three to four week old seedlings exposed to a low light pretreatment yielded protoplasts capable of sustained divisions on modified Lycopersicon Culture Medium. Plating efficiencies varied from 7.2%–25.9%. Colonies were transferred to modified solid greening medium after 25–35 days. Developing calli that turned bright green and produced dark green bud primordia were transferred to shoot induction medium. Shoot formation efficiencies ranged from 60%–85%. Shoots rooted easily and regenerated plants grown to complete maturity showed only transient somaclonal variation.Abbreviations BA benzylamino purine - MES 2-(N-morpholino)-ethane sulfonic acid - NAA naphthalene acetic acid  相似文献   

7.
Factors influencing reliable shoot regeneration from leaf explants of rapeseed (Brassica napus L.) were examined. Addition of AgNO3 to callus induction medium was significantly effective for shoot regeneration in all three genotypes initially tested. When 48 genotypes subsequently were surveyed, a large variation of shoot regenerability was observed, ranging from 100 to 0% in frequency of bud formation and from 7.5 to 0 in the number of buds per explant. A significant correlation (r=0.84) was observed between the frequency of bud formation and the number of buds per explant. The shoot regenerability from leaf explants was not related to that from cotyledonary explants (r=0.28). Histological observations showed that an organized structure developed from calluses produced at vascular bundle tissues after 7 days of culture on callus induction medium, and they developed shoot apical meristems one week after transfer onto shoot induction medium. Regenerated plantlets were obtained 2 months after the initiation of culture and they normally flowered and set seeds. No alterations of morphology or DNA contents were observed in regenerated plants and their S1 progenies.  相似文献   

8.
Summary One to five percent of Lycopersicon peruvianum (L.) Mill. leaf mesophyll protoplasts undergo cell division and concomitant organization to form embryogenic-like structures when cultured in Murashige and Skoog medium (1962) containing 3% sucrose, 9% mannitol, 1.0 mg/l kinetin (K) and 1.0 mg/l naphthalene acetic acid (NAA) at pH 5.6–5.8 (medium A). These embryogenic structures, after passing through developmental stages similar to those observed in zygotic embryogeny, are capable of forming shoots on hormone-free medium A. In medium B, wherein 0.5 mg/l of 2,4-dichlorophenoxyacetic (2,4-D) replaced the hormones (K and NAA), embryogenic structures did not develop. However, callus originating in medium B retained morphogenetic capacity as was evidenced by subsequent shoot regeneration when they were transferred to medium A with K and NAA replaced by 1.0 mg/l zeatin (Z). The potential value of incorporating this regeneration trait into Lycopersicon species and cultivated lines for use in tissue culture programs is discussed.Michigan Agricultural Experiment Station Journal No. 9676  相似文献   

9.
Summary Asymmetric somatic hybrids were recovered following fusion of tomato leaf mesophyll protoplasts with irradiated protoplasts isolated from Lycopersicon pennellii suspension cells. The asymmetry was determined by scoring the regenerants at between 20 and 24 loci using isozymes and restriction fragment length polymorphisms. In addition, three quantitative traits, fruit size, leaf shape, and stigma exsertion, were measured in the regenerants. The recovery of asymmetric somatic hybrids was as high as 50% of the regenerants, and there was no requirement for the transfer of a selectable marker gene from the irradiated partner. The amount of nuclear DNA transferred from the irradiated protoplast fusion partner was found to be inversely proportional to the radiation dose. It was possible to recover tomato asymmetric somatic hybrids which were self-fertile and contained limited amounts of genetic information from L. pennelli.  相似文献   

10.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

11.
Summary Mesophyll protoplasts of an interspecific Lycopersicon esculentum Mill, (tomato) x Lycopersicon pennellii hybrid plant (EP) were fused with callus-derived protoplasts of Solanum lycopersicoides Dun. using a modified PEG/DMSO procedure. The EP plant was previously transformed by Agrobacterium tumefaciens which carried the NPTII and nopaline synthase genes. Protoplasts were plated at 105/ml in modified KM medium and 16 days post-fusion 25 ug/ml kanamycin was added to the culture medium. During shoot regeneration, 212 morphologically similar putative somatic hybrids were delineated visually from kanamycin resistant EP's. Forty-eight shoots, randomly selected among the 212, were further verified as somatic hybrids by their leaf phosphoglucoisomerase heterodimer isozyme pattern. However, the resulting plants were virtually pollen sterile. In a second fusion, mesophyll protoplasts of Solanum melongena (eggplant) were fused with EP callus-derived protoplasts. Using the same fusion and culture procedure, only two dark green calli were visually selected among the pale green parental EP and verified as somatic cell hybrids by several isozyme patterns. These two calli have produced only leaf primordia in one and half years on regeneration medium.Abbreviations ABA abscisic acid - BAP 6 benzylaminopurine - 2,4-D 2,4 dichlorophenoxy acetic acid - DMSO dimethyl sulfoxide - GA3 gibberellic acid - GOT glutamate oxaloacetate - IAA indoleacetic acid - IBA indolebutyric acid - IDH isocitrate dehydrogenase - MDH malate dehydrogenase - MES morpholinoethane-sulfonic acid - PEG polyethylene glycol - 6-PGDH 6 phosphogluconate dehydrogenase - PGI phosphoglucoisomerase  相似文献   

12.
《Plant science》1987,49(1):63-72
A rapid procedure for protoplast isolation, culture and plant regeneration has been developed for two Solanum species (S. lycoperisicoides and S. verrucosum) and Lycopersicon pennellii. Freshly isolated protoplasts were initially cultured in liquid Solanum Culture Medium (SCM), containing 2,4-dichlorophenoxy acetic acid (2,4-D). Subsequent dilution with fresh culture medium without auxins appeared to be essential to obtain rapid regeneration medium later on. The resulting micro calli were first grown in a culture medium containing 0.5 mg/l 6-BAP and 0.05 mg/l NAA and 0.2 M mannitol and 7.3 mM sucrose to induce greening, at a lower osmolarity (300 mOsm · kg−1). Then, the green micro calli were transferred to shoot induction medium, containing 2 mg/l zeatin, 0.1 mg/l IAA and 2% sucrose (150 mOsm · kg−1). In this way plants could be regenerated from leaf mesophyll protoplasts and suspension cell-derived protoplasts of L. pennellii and S. lycopersicoides within 2 months. Shoot regeneration from leaf mesophyll protoplasts of the two lines of S. verrucosum could be obtained 3 months after protoplast isolation.  相似文献   

13.
Freshly isolated mesophyll and suspensions-cell protoplasts of S. tuberosum cvs. Desiree and Maris Piper were cultured in different media i.e. modified MS, V-KM and MS-KM. Protoplast plating efficiencies were higher in MS-KM medium. Resulting protoplast-derived calluses were transferred either onto the medium of Bokelmann and Roest (1983) or that of Lam (1977) for shoot regeneration. Calluses derived from mesophyll cell protoplasts differentiated about 2 weeks earlier than calluses derived from suspension-cell protoplasts. Shoot initiation was also about 2 weeks earlier from calluses subcultured onto the former medium as compared to the latter.  相似文献   

14.
The potato cv. Record is recognized as a recalcitrant cultivarin tissue culture and attempts in the past to obtain regenerationfrom protoplasts continually failed, despite media and protocolalterations. By sampling a large number of Record tubers, significantdifferences between lines were obtained for regeneration fromleaf discs. Eight such lines exhibiting a range of responseto regeneration from leaf discs were used in the present studyto examine protoplast culture response. Significant variationwas detected in protoplast plating efficiency and in the numberof regenerants produced. These results are discussed in relationto the exploitation of protoplasts in potato improvement andin terms of the role of tissue culture techniques for the maintenanceof potato cultivars. Solarium tuberosum, cv. Record, potato, protoplasts, intraclonal variation  相似文献   

15.
The potato cv. Record is recognized as a recalcitrant cultivarin tissue culture and attempts in the past to obtain regenerationfrom protoplasts continually failed, despite media and protocolalterations. By sampling a large number of Record tubers, significantdifferences between lines were obtained for regeneration fromleaf discs. Eight such lines exhibiting a range of responseto regeneration from leaf discs were, used in the present studyto examine protoplast culture response. Significant variationwas detected in protoplast plating efficiency and in the numberof regenerants produced. These results are discussed in relationto the exploitation of protoplasts in potato improvement andin terms of the role of tissue culture techniques for the maintenanceof potato cultivars. Solanum tuberosum, cv. Record, potato, protoplasts, intraclonal variation  相似文献   

16.
The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid ofAgrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2–5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation,L. chilense LA1969 andL. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars.The Hebrew University of Jerusalem, Faculty of Agriculture, Department of Field and Vegetable Crops  相似文献   

17.
Summary Asymmetric somatic hybrid plants were recovered after fusing irradiated mesophyll protoplasts of donor Lycopersicon esculentum × L. pennellii (EP) interspecific hybrid with callus-derived protoplasts of recipient Solanum lycopersicoides. EP plant A54 had been previously transformed by an agrobacterium vector, and the T-DNA insert mapped to the L. esculentum chromosome 12. The T-DNA insert conferred kanamycin resistance to EP that was subsequently used to select cell fusion products and recover asymmetric hybrid plants that retained tagged chromosome 12. Doses of 50- and 100-Gy irradiation promoted the elimination of only a few donor chromosomes. At 200 Gy, the regenerated plants had ploidy levels higher than tetraploid. However, the T-DNA tagged chromosome 12 was always retained in the asymmetric hybrid plants tested. Likewise, all plants from the 100-Gy series, with the exception of number 160, were mixoploid in the root-tip cells. Such mixoploid asymmetric somatic hybrids could be stabilized by inducing adventitious shoots on leaf strips cultured on shoot regeneration medium containing kanamycin. The asymmetric hybrid plants did not produce viable seed when self-pollinated or backcrossed to tomato or S. lycopersicoides. Present address: Department of Biology, University College of London, Gower Street, London, UK  相似文献   

18.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

19.
Various media, sourees of explant and Rubus genotypes of diverse origin were assessed for their ability to regenerate whole plants in vitro. Regenerants were produced from leaf discs and from both peeled and unpeeled internodal stem segments but not from epidermal peelings. Hormone type and concentration, amount of sucrose, absence of activated charcoal, presence of light and for leaf discs their orientation with adaxial surface uppermost were factors crucial for plantlet regeneration, and genotypes differed considerably in their capacity to regenerate.  相似文献   

20.
An efficient and rapid plant regeneration system was established for zonal and scented geraniums using leaf discs as explants. Several explants, medium and culture conditions were studied to optimize shoot induction. Leaf discs taken from 4–5 weeks old in vitro grown plants, whatever the genotype, were more effective for shoot regeneration than those taken from greenhouse grown plants. Darkness proved to be a stimulating factor for shoot regeneration and the combination between NAA and two cytokinins gave the best results. Direct shoot regeneration (100%) was obtained from leaf discs of P. capitatum on half-strength MS medium supplemented with 0.5 mg l−1 NAA in combination with 1 mg l−1 of BAP and zeatin in darkness (11.4 shoots per explant). In the same medium and culture conditions, all P. graveolens leaf discs also exhibited direct shoot regeneration (7.3 shoots per explant). For P. x hortorum, 100% of leaf discs underwent shoot regeneration on a MS medium supplemented with 0.2 mg l−1 NAA in combination with 0.5 mg l−1 of BAP and zeatin in darkness (8.8 shoots per explant) or under low light conditions with 0.2 mg l−1 NAA and 1 mg l−1 of BAP and zeatin (7.5 shoots per explant). For this species, the best results for shoot elongation were obtained on half-strength MS medium gelled with Phytagel 0.3% (v/v). Whatever the genotype, all shoots rooted readily when transferred to diluted MS medium (MS/2) containing 1 mg l−1 IAA. Acclimatized plants grew normally and flowered in greenhouse conditions. Flow cytometry analysis made on leaves of acclimatized plants revealed that all the scented geranium plants are similar to mother plants while 71% of P. x hortorum plants which showed strong growth were tetraploid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号