首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gas vesicle formation in haloarchaea requires the expression of the p-vac region consisting of 14 genes, gvpACNO and gvpDEFGHIJKLM. Expression of gvpFGHIJKLM leads to essential accessory proteins formed in minor amounts. An overexpression of gvpG, gvpH or gvpM in addition to p-vac inhibited gas vesicle formation, whereas large amounts of all other Gvp proteins did not disturb the synthesis. The unbalanced expression and in particular an aggregation of the overproduced Gvp with other accessory Gvp derived from p-vac could be a reason for the inhibition. Western analyses demonstrated that the hydrophobic GvpM (and GvpJ) indeed form multimers. Fluorescent dots of GvpM–GFP were seen in cells in vivo underlining an aggregation of GvpM. In search for proteins neutralizing the inhibitory effect in case of GvpM, p-vac +pGMex, +pHMex, +pJMex, and +pLMex transformants were constructed. The inhibitory effect of GvpM on gas vesicle formation was suppressed by GvpH, GvpJ or GvpL, but not by GvpG. Western analyses demonstrated that pHMex and pJMex transformants contained additional larger protein bands when probed with an antiserum raised against GvpH or GvpJ, implying interactions. The balanced amount of GvpM–GvpH and GvpM–GvpJ appears to be important during gas vesicle genesis.  相似文献   

3.
4.
5.
Gas vesicles are proteinaceous, gas‐filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in‐silico 3D‐model of GvpA of the predicted coil‐α1‐β1‐β2‐α2‐coil structure is available and implies that the two β‐chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac+ phenotype). In most cases, an alanine substitution of a non‐polar residue did not abolish gas vesicle formation, but the replacement of single non‐polar by charged residues in β1 or β2 resulted in Vac transformants. A replacement of residues near the β‐turn altered the spindle‐shape to a cylindrical morphology of the gas vesicles. Vac transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt‐bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid‐state NMR.  相似文献   

6.
The effect of magnesium ions on the parameters of the DNA helix-coil transition has been studied for the concentration range 10?6–10?1M at the ionic strengths of 10?3M Na+. Special attention has been given to the region of low ion concentrations and to the effect of polyvalent metallic impurities present in DNA. It has been shown that binding with Mg++ increases the DNA stability, the effect being observed mainly in the concentration range 10?6–10?4M. At[Mg++]>10?2M the thermal stability of DNA starts to decrease. The melting range extends to concentrations ~10?5M and then decreases to 7–8°C at the ion content of 10?3M. Asymmetry of the melting curves is observed at low ionic strengths ([Na+] = 10?3M) and [Mg++] ? 10?5M. The results, analyzed in terms of the statistical thermodynamic theory of double-stranded homopolymers melting in the presence of ligands, suggest that the effects observed might be due to the ion redistribution from denatured to native DNA. An experimental DNA–Mg++ phase diagram has been obtained which is in good agreement with the theory. It has been shown that thermal denaturation of the system may be an efficient method for determining the ion-binding constants for both native and denatured DNA.  相似文献   

7.
The binding of cupric ion (Cu++) to DNA was followed by spectrophotometry, melting profiles, and hydrodynamic techniques, in 0. 1M NaClO4 and at pH 5. 6. A small amount of Cu++ is bound specifically to bases (about 1 Cu++ per 20 nucleotides), in agreement with polarographic and EPR data. A preferential stabilization of G–C pairs and only a slight increase of the flexibility of the molecule were observed. In 5 × 10?3M NaClO4, a higher number of nonhomogeneous binding sites is found by spectrophotometry. It is concluded that at least two types of sites are available for Cu++. The first one, where Cu++ is chelating N7 of purines to phosphate, is observed only at low ionic strength and destabilizes the double helix. The second exists mainly at 0, 1M or higher ionic strength. All the sites are identical and could be attributed to two successive guanine residues in the same strand. Similar behavior was found for other divalent cations, e. g., Fe++, Mn++, and Co++.  相似文献   

8.
9.
Gas vesicles consist predominantly of the hydrophobic GvpA and GvpC, and the accessory proteins GvpF through GvpM are required in minor amounts during formation. GvpM and its putative interaction partners were investigated. GvpM interacted with GvpH, GvpJ and GvpL, but not with GvpG. Interactions were also observed in vivo in Haloferax volcanii transformants using Gvp fusions to the green fluorescent protein smGFP. Cells producing the hydrophobic MGFP contained a single fluorescent aggregate per cell, whereas cells containing LGFP or HGFP were fully fluorescent. The soluble LGFP formed stable co-aggregates with GvpM in LGFPM transformants, but the presence of GvpH resulted in the absence of MGFP foci in HMGFP transformants. Substitution- and deletion mutants of GvpM determined functionally important amino acids (aa). Substitution of a polar by a non-polar aa in the N-terminal region of GvpM had no effect, whereas a substitution of a non-polar by a polar aa in this region inhibited gas vesicle formation in transformants. Substitutions in region 44–48 of GvpM strongly reduced the number of gas vesicles, and deletions at the N-terminus resulted in Vac? transformants. Gas vesicle morphology was not affected by any mutation, implying that GvpM is required during initial stages of gas vesicle assembly.  相似文献   

10.
Gas vesicles are intracellular, protein-coated, and hollow organelles found in cyanobacteria and halophilic archaea. They are permeable to ambient gases by diffusion and provide buoyancy, enabling cells to move upwards in liquid to access oxygen and/or light. In halobacteria, gas vesicle production is encoded in a 9-kb cluster of 14 genes (4 of known function). In cyanobacteria, the number of genes involved has not been determined. We now report the cloning and sequence analysis of an 8,142-bp cluster of 15 putative gas vesicle genes (gvp) from Bacillus megaterium VT1660 and their functional expression in Escherichia coli. Evidence includes homologies by sequence analysis to known gas vesicle genes, the buoyancy phenotype of E. coli strains that carry this gvp gene cluster, the presence of pressure-sensitive, refractile bodies in phase-contrast microscopy, structural details in phase-constrast microscopy, structural details in direct interference-contrast microscopy, and shape and size revealed by transmission electron microscopy. In B. megaterium, the gvp region carries a cluster of 15 putative genes arranged in one orientation; they are open reading frame 1 and gvpA, -P, -Q, -B, -R, -N, -F, -G, -L, -S, -K, -J, -T, and -U, of which the last 11 genes, in a 5.7-kb gene cluster, are the maximum required for gas vesicle synthesis and function in E. coli. To our knowledge, this is the first example of a functional gas vesicle gene cluster in nonaquatic bacteria and the first example of the interspecies transfer of genes resulting in the synthesis of a functional organelle.  相似文献   

11.
Neuromuscular transmission was measured in muscles of spider crabs (Hyasareneus) and lobsters (Homarus americanus). Solutions containing 40 and 10 mM/1 Mg++, which were approximately the same as those measured in the blood of Hyas and Homarus, respectively, were used to soak the preparations prior to testing. In Homarus, neuromuscular transmission was severely depressed by 40 mM Mg++. In spider crabs, neuromuscular transmission was not severely depressed. Although the amount of transmitter released by nerve impulses was reduced, total membrane depolarization during trains of impulses was not reduced because a compensating increase in muscle fiber membrane resistance occurred in Hyas preparations exposed to 40 mM Mg++. Hyas, but not Homarus, is physiologically adapted to function at relatively high blood Mg++ concentrations.  相似文献   

12.
13.
Summary A method is described for culturing human mammary epithelial cells in primary culture and allowing more than 50 generations and a 1000-fold increase from starting inocula without need of enzymatic transfers. Organoids dissociated from breast tissue are plated in medium containing 1.05 mM Ca++ to effect attachment and growth to monolayer density. Medium is then switched to one containing 0.06 mM Ca++ to overcome “renewal inhibition” and to stimulate growth. In low Ca++ media, primary cultures become a long-term, continuous source of free-floating viable cells free of fibroblasts. A fundamental requirement for extended growth in primary culture is maintaining calcium levels at approximately 0.06 mM. Above 0.06 mM Ca++, cells divide only 3 to 4 times in primary cultures before terminal differentiation occurs. At 0.06 mM Ca++, cells continue to divide for periods of time determined partly by feeding schedule, but up to 6 mo. and 50 generations of (linear) growth. Cells released from monolayer were greater than 90% viable and yielded 105 cells/cm2 of attached cells every 72 h. Free-floating single cells readily replated and cloned, when transferred, without need of trypsin for dissociation. Long-term free-floating cells were typical mammary epithelium: (a) they formed domes and exhibited renewal inhibition, (b) they produced ductlike formations in collagen gels, (c) they contained epithelium-specific keratin filaments, and (d) they were diploid.  相似文献   

14.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

15.
The coupling of ion binding to the single strand helix—coil transition in poly (A) and poly(C) is used to obtain information about both processes by ion titration and field-jump relaxation methods. Characterisation of the field-jump relaxation in poly(C) at various concentrations of monovalent ions leads to the evaluation of a stability constant K = 71 M?1 for the ion binding to the polymer. The rate constant of helix formation is found to be 1.3 × 107 s?1, whereas the dissociation rate is 1.0 × 106 s?1. Similar data are presented for poly (A) and poly (dA).The interaction of Mg++ and Ca++ with poly (A) and poly (C) is measured by a titration method using the polymer absorbance for the indication of binding. The data can be represented by a model with independent binding “sites”. The stability constants increase with decreasing salt concentration from 2.7 × 104 M?1 at medium ionic strengths up to 2.7 × 107 M?1 at low ionic strength. The number of ions bound per nucleotide residue is in the range 0.2 to 0.3. Relaxation time constants associated with Mg++ binding are characterised over a broad range of Mg++ concentrations from 5 μM to 500 μM. The observed concentration dependence supports the conclusion on the number of binding places inferred from equilibrium titrations. The rate of Mg++ and Ca++ association to the polymer is close to the limit of diffusion control (kR = 1 × 1010 to 2 × 1010 M?1 s?1). This high rate demonstrates that Mg++ and Ca++ ions do not form inner-sphere complexes with the polynucleotides. Apparently the distance between two adjacent phosphates is too large for a simultaneous site binding of Mg++ or Ca++, and inner sphere complexation at a single phosphate seems to be too weak. The data support the view that the ions like Mg++ and Ca++ surround the polynucleotides in the form of a mobile ion cloud without site binding.  相似文献   

16.
Abstract

Resting cells of Gordonia terrae with nitrilase (EC 3.5.5.1) activity were investigated for transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid. The maximum conversion was observed in 0.1 M potassium phosphate buffer, pH 8.0, using 40 mM substrate and resting cells corresponding to 0.70 Uml? 1 nitrilase activity at 35°C. A 500 mL fed batch reaction was designed for synthesis of p-hydroxybenzoic acid with six feedings of substrate at an interval of 1 h. A total of 14.4 g of p-hydroxybenzoic acid (> 98.7%) was obtained in 6 h with a productivity of 0.78 gh? 1g? 1DCW of G. terrae.  相似文献   

17.
ABSTRACT. Strains of Tetrahymena thermophila were examined in an attempt to establish what role certain ions (Na+, K+, Li+, Ba++, Ca++, Mg++, Mn++, Al+++, Fe+++) play in influencing cell survival time in a culture medium. In short-term experiments (20–30 min), cell survival time in a 1% peptone medium is directly related to the valence of the ion employed. Long-term observations (lasting up to five days) in a 1% peptone medium containing lower ion concentrations revealed that the effects on cell-cycle time are not correlated with the valence state of the ion. Comparisons were made among the ionic resistances of strains of T. thermophila, of T. pyriformis sensu stricto, and of two subspecies of T. pigmentosa. Strains within a species are highly correlated in their patterns of ionic response, while marked differences between species occur. The most distinctive group of strains examined came from one of the subspecies (syngen 6) of T. pigmentosa.  相似文献   

18.
Detailed enzymatic properties of the ureido ring synthetase purified from Pseudomonas graveolens were investigated. Nucleotide specificity studies indicated that CTP, UTP, GTP, and ITP were each tenth to one-fifth as active as ATP. The effect of substrate concentration was examined. The Km values for 7,8-diaminopelargonic acid, biotin diaminocarboxylic acid, NaHCO3, ATP, and MgCl2 were 1 × 10?4 M, 4 × 10?5 M, 1 × 10?2 m, 5 × 10?5 M, and 3 × 10?3 M, respectively. It was elucidated that only ADP was produced from ATP in both the reaction of desthiobiotin synthesis from 7,8-diaminopelargonic acid and biotin synthesis from biotin diaminocarboxylic acid. The reaction was remarkably inhibited by Ni2+, Cd2+, Cu2+, Ag+, and As3+, while Mn2+ remarkably enhanced the enzyme reaction. The reaction was remarkably inhibited by metal-chelating reagents. It was elucidated that ADP had a competitively inhibiting effect on this enzyme reaction. 7,8-DiaminopeIargonic acid, which is the substrate for the desthiobiotin synthesis, competitively inhibited the biotin synthesis from biotin diaminocarboxylic acid. The stoichiometry of the desthiobiotin synthesis indicated that the formation ratio of desthiobiotin to ADP was 1 to 1.  相似文献   

19.
Pediococcus soyae nov. sp., which has an inherited salt tolerant nature, is grown in solutions of high osmotic pressure. When this strain is transferred from 0.5% salted medium to a new medium containing 18% sodium chloride, the viable counts of this organism firstly decrease from about one half to one-third of the inoculated cells, and then normal growth occurs. This indicates the occurrence of physiological adaptation at an early stage of growth.

The growth of this lactic acid bacterium is observed in concentrated solutions of various inorganic salts. The solutions containing Na+, K+, Cl?, NO3? and SO4– – ions are not toxic for the organism, and the organism can grow in solutions of 133 atm. osmotic pressure, generally. However, Li+, Ca++, Mg++ and Br+ are, toxic for growth.

In concentrated sugar solutions, this organism also propagates well, and growth is observed in the media containing 50% glucose or 60% sucrose, osmotic pressure being 105 and 84 atm., respectively. Therefore, Pediococcus soyae nov. sp. is osmotolerant.  相似文献   

20.
A cell‐wall deficient strain of Chlamydomonas reinhardtii P. A Dang. CC‐849 was cotransformed with two expression vectors, p105B124 and pH105C124, containing phbB and phbC genes, respectively, from Ralstonia eutropha. The transformants were selected on Tris‐acetate‐phosphate media containing 10 μg · mL?1 Zeomycin. Upon further screening, the transgenic algae were subcloned and maintained in culture. PCR analysis demonstrated that both phbB and phbC genes were successfully integrated into the algal nuclear genome. Poly‐3‐hydroxybutyrate (PHB) synthase activity in these transgenic algae ranged from 5.4 nmol · min?1 · mg protein?1 to 126 nmol · min?1 · mg protein?1. The amount of PHB in double transgenic algae was determined by gas chromatography–mass spectrometry (GC–MS) when comparing with PHB standard. In addition, PHB granules were observed in the cytoplasm of transgenic algal cells using TEM, which indicated that PHB was synthesized in transgenic C. reinhardtii. Hence, results clearly showed that producing PHB in C. reinhardtii was feasible. Further studies would focus on enhancing PHB production in the transgenic algae and targeting the chloroplast for PHB accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号