首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of terminal transferase with single-stranded DNA   总被引:2,自引:0,他引:2  
A 58-kDa monomer of terminal transferase was isolated from calf thymus using a monoclonal antibody affinity column. The enzymatic activity was comparable to that of the 44-kDa alpha beta dimer isolated by conventional methods. Binding of the two enzyme forms to single-stranded DNA was monitored by fluorescence. The site size of both forms was approximately 11 +/- 2 nucleotides. Binding of the 44-kDa alpha beta dimer to polydeoxyadenosine was examined under several conditions. The cooperativity parameter increased from about 90 in the presence of Mg2+ to 300-400 in the absence of Mg2+. The observed dissociation constant of 3-5 microM was essentially independent of salt concentration, whereas the intrinsic dissociation constant decreased about 5-fold in the presence of Mg2+. The binding parameters of the 58-kDa monomer were independent of buffer composition and were similar to those of the 44-kDa alpha beta dimer in the presence of Mg2+. These results indicate that the additional 14-kDa peptide sequences present in the high molecular mass monomer form are not part of the DNA-binding site of terminal transferase.  相似文献   

2.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   

3.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

4.
The pH dependence of the apparent tetramer to dimer dissociation constant has been determined at 20 degrees for both oxy- and deoxyhemoglobins A and Kansas. These measurements were made by three different procedures: gel chromatography, sedimentation velocity, and kinetic methods in either of three buffer systems: 0.05 M cacodylate, Tris, or glycine with 1 mM EDTA and 0.1 M NaCl between pH 6.5 and 11. The tetramer-dimer dissociation constant of human oxyhemoglobin A decreases from about 3.2 X 10(-6) M at pH 6.0 to about 3.2 X 10(-8) M at pH 8.5. The slope of this line indicates that the dissociation of tetramer to dimer is accompanied by the uptake of about 0.6 protons per mol of tetramer in this region. The corresponding dissociation constant for deoxyhemoglobin in the same pH region increases apparently almost linearly from 1.0 x 10(-12) M at pH 6.5 to about 1.0 x 10(-5) M at pH 11. To dimer is associated with the release of about 1.6 protons per mol of tetramer. Comparison of these data with the known proton release accompanying the oxygenation of tetramers confirms that the pH dependence of oxygen binding by dimers must be very small. The present data predict that the overall proton release or uptake per oxygen bound by dimer should be less than 0.1. The tetramer-dimer dissociation equilibria of oxy- and deoxyhemoglobins above pH 8.5 have identical pH dependences. In this range the dissociation constant of deoxy-Hb is about one-tenth that of oxyhemoglobin. Human oxyhemoglobin Kansas is known to have an enhanced tetramer-dimer dissociation compared with that of hemoglobin A. Below pH 8.5 the tetramer-dimer dissociation constant of Hb Kansas is about 400 times greater than that of HbA in the absence of phosphate buffers. In contrast, the tetramer-dimer dissociation constants of deoxyhemoglobins A and Kansas appear to be identical. These findings are consistent with previous structural observations on these hemoglobins. The data on the tetramer-dimer dissociation of human hemoglobin were used to calculate the total free energy of binding of oxygen to the tetramer and the median oxygen pressure on the basis of fundamental linkage relations and a pH-independent estimate of the total free energy of binding oxygen to dimer. Simulated oxygen binding curves were generated with the equations of Ackers and Halvorson (Ackers, G. K., and Halvorson, H. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 4312-4316) by making two assumptions: (a) that the dimers are noncooperative and pH-independent in O2 binding and (b) that the distribution of cooperative energy in the oxygenation of tetramers is independent of pH. We have compared these simulations with experimental data obtained at low protein concentrations (30 to 124 muM heme) to show that the variation in oxygen affinity with pH can be described in terms of the subunit equilibria. We conclude that an accurate analysis of the contributions of individual oxygen binding steps to the Bohr effect cannot be made without considering the contributions of the dimers to oxygen binding...  相似文献   

5.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

6.
Human immunodeficiency virus 1 (HIV-1) protease is an aspartyl protease composed of two identical protomers linked by a four-stranded antiparallel beta-sheet consisting of the NH2- and COOH-terminal segments (Weber, I.T. (1990) J. Biol. Chem. 265, 10492-10496). Kinetic analysis of the HIV-1 protease-catalyzed hydrolysis of a fluorogenic substrate demonstrates that the enzyme is an obligatory dimer. At pH = 5.0, 0.1 M sodium acetate, 1 M NaCl, 1 mM EDTA buffer, 37 degrees C, the equilibrium dissociation constant, Kd = 3.6 +/- 1.9 nM. We found that the tetrapeptide Ac-Thr-Leu-Asn-Phe-COOH, corresponding to the COOH-terminal segment of the enzyme, is an excellent inhibitor of the enzyme. Kinetic analysis shows that the inhibitor binds to the inactive protomers and prevents their association into the active dimer (dissociative inhibition). The dissociative nature of this inhibition is consistent with the results obtained from sedimentation equilibrium experiments in which the apparent molecular weight of the enzyme was observed to be 20,800 +/- 1,500 and 12,100 +/- 300, in the absence and presence of the COOH-terminal tetrapeptide, respectively. The dissociation constant of the protomer-inhibitor complex is Ki = 45.1 +/- 1.8 microM. This is the first kinetic analysis and direct experimental demonstration of noncovalent dissociative inhibition.  相似文献   

7.
F P Schwarz 《Biochemistry》1988,27(22):8429-8436
Differential scanning calorimetry (DSC) measurements were performed on the thermal denaturation of ribonuclease a and ribonuclease a complexed with an inhibitor, cytidine or uridine 3'-monophosphate, in sodium acetate buffered solutions. Thermal denaturation of the complex results in dissociation of the complex into denatured ribonuclease a and free inhibitor. Binding constants of the inhibitor to ribonuclease a were determined from the increase in the denaturation temperature of ribonuclease a in the complexed form and from the denaturation enthalpy of the complex. Binding enthalpies of the inhibitor to ribonuclease a were determined from the increase in the denaturation enthalpy of ribonuclease a complexed with the inhibitor. For the cytidine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 87 +/- 8 M-1 (pH 7.0) to 1410 +/- 54 M-1 (pH 5.0), while the binding enthalpies increase from 17 +/- 13 kJ mol-1 (pH 4.7) to 79 +/- 15 kJ mol-1 (pH 5.5). For the uridine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 104 +/- 1 M-1 (pH 7.0) to 402 +/- 7 M-1 (pH 5.5), while the binding enthalpies increase from 16 +/- 5 kJ mol-1 (pH 6.0) to 37 +/- 4 kJ mol-1 (pH 7.0). The binding constants and enthalpies of the cytidine inhibitor in 0.05 M sodium acetate buffered solutions increase respectively from 328 +/- 37 M-1 (pH 6.5) to 2200 +/- 364 M-1 (pH 5.5) and from 22 kJ mol-1 (pH 5.5) to 45 +/- 7 kJ mol-1 (pH 6.5). the denaturation transition cooperativities of the uncomplexed and complexed ribonuclease a were close to unity, indicating that the transition is two state with a stoichiometry of 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have examined the interaction of the Escherichia coli trp aporepressor with its ligand, L-tryptophan, using both equilibrium dialysis and flow dialysis methods. Results obtained by the two procedures were equivalent and indicate that the trp aporepressor binds L-tryptophan with an equilibrium dissociation constant (Kd) of 40 microM at 25 degrees C under standard binding assay conditions (10 mM potassium phosphate, pH 7.4, 0.2 M potassium chloride, 0.1 mM EDTA, 5% glycerol). Molecular sizing of the purified trp aporepressor shows that in the absence of ligand the regulatory protein exists as a dimeric species with greater than 99% purity and an apparent molecular weight of 30,000. Under the storage and assay conditions used, the dimer appears quite stable, and essentially no monomer or higher multimeric species are detected. Analysis of binding data by Scatchard and direct linear plot methods shows two identical and independent ligand-binding sites/native trp aporepressor dimer. When examined as a function of temperature, L-tryptophan binding by trp aporepressor varied over 7-fold (Kd = 28 microM at 6.5 degrees C to Kd = 217 microM at 40 degrees C). At the optimal growth temperature for E. coli (37 degrees C), the dissociation constant was 160 microM for the ligand, L-tryptophan. From the relationship between temperature and L-tryptophan binding by trp aporepressor, the apparent enthalpy change delta H = -10.6 +/- 0.6 kcal mol-1 and the apparent entropy change delta S = -17 +/- 2 cal degree-1 mol-1 were determined.  相似文献   

9.
M J Chen  K H Mayo 《Biochemistry》1991,30(26):6402-6411
Platelet factor 4 (PF4) monomers (7800 daltons) form dimers and tetramers in varying molar ratios under certain solution conditions [Mayo, K. H., & Chen, M. J. (1989) Biochemistry 28, 9469]. The presence of a simplified aromatic region (one Tyr and two His) and resolved monomer, dimer, and tetramer Y60 3,5 ring proton resonances makes study of PF4 aggregate association/dissociation thermodynamics and kinetics possible. PF4 protein subunit association/dissociation equilibrium thermodynamic parameters have been derived by 1H NMR (500MHz) resonance line-fitting analysis of steady-state Y60 3,5 ring proton resonance monomer-dimer-tetramer populations as a function of temperature from 10 to 40 degrees C. Below 10 degrees C and above 40 degrees C, resonance broadening and overlap severely impaired analysis. Enthalpic and entropic contributions to dimer association Gibb's free energy [-5.1 kcal/mol (30 degrees C)] are +2.5 +/- 1 kcal/mol and +26 +/- 7 eu, respectively, and for tetramer association Gibb's free energy [-5.7 kcal/mol (30 degrees C)], they are -7.5 +/- 1 kcal/mol and -7 +/- 3 eu, respectively. These thermodynamic parameters are consistent with low dielectric medium electrostatic/hydrophobic interactions governing dimer formation and hydrogen bonding governing tetramer formation. Association/dissociation kinetic parameters, i.e., steady-state jump rates, have been derived from exchange-induced line-width increases and from 1H NMR (500 MHz) saturation-transfer and spin-lattice (Tl) relaxation experiments. From dissociation jump rates and equilibrium constants, association rate constants were estimated. For dimer and tetramer equilibria at 30 degrees C, unimolecular dissociation rate constants are 35 +/- 10 s-1 for dimer dissociation and 6 +/- 2 s-1 for tetramer dissociation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The self-association of glucose dehydrogenase (beta-D-glucose:NAD(P) 1-oxidoreductase, EC 1.1.1.47) from Bacillus megaterium was studied by analytical ultracentrifugation. The pH and composition of the buffer used were such that, owing to a reversible partial dissociation of the tetrameric enzyme, enzyme activity was reduced. It was found that under these conditions the protein exists in a monomer/dimer/tetramer association equilibrium.  相似文献   

11.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

12.
G R Parr  G G Hammes 《Biochemistry》1976,15(4):857-862
The kinetics of dissociation and reassembly of rabbit skeletal muscle phosphofructokinase has been studied using fluorescence, stopped-flow fluorescence and enzyme activity measurements. The dissociation of the fully active tetramer in 0.8 M guanidine hydrochloride (0.1 M potassium phosphate, pH 8.0) occurs in three kinetic phases as measured by changes in the protein fluorescence emission intensity: dissociation of tetramer to dimer with a relaxation time of a few milliseconds; dissociation of dimer to monomer with a relaxation time of a few seconds; and a conformational change of the monomer with a relaxation time of a few minutes. All three phases exhibit first-order kinetics; ATP (0.05 mM) retards the second step but does not influence the rate of the other two processes. The rate of the second process increases with decreasing temperature; this may be due to the involvement of hydrophobic interactions in the stabilization of the dimeric enzyme. A further unfolding of the monomer polypeptide chain occurs at higher guanidine concentrations, and the relaxation time associated with this process was found to be 83 ms in 2.5 M guanidine, 0.1 M potassium phosphate (pH 8.0) at 23 degrees C. The phosphofructokinase monomers were reassembled from 0.8 M guanidine chloride by 1:10 dilution of the guanidine hydrochloride concentration and yielded a protein with 70-94% of the original activity, depending on the protein concentration. The reactivation process follows second-order kinetics; ATP (5 mM) increases the rate of reactivation without altering the reaction order, while fructose 6-phosphate does not influence the rate of reaction. The rate-determining step is probably the association of monomers to form the dimer.  相似文献   

13.
Deu E  Kirsch JF 《Biochemistry》2007,46(19):5810-5818
The guanidine hydrochloride (GdnHCl) mediated denaturation pathway for the apo form of homodimeric Escherichia coli aspartate aminotransferase (eAATase) (molecular mass = 43.5 kDa/monomer) includes a partially folded monomeric intermediate, M* [Herold, M., and Kirschner, K. (1990) Biochemistry 29, 1907-1913; Birolo, L., Dal Piaz, F., Pucci, P., and Marino, G. (2002) J. Biol. Chem. 277, 17428-17437]. The present investigation of the urea-mediated denaturation of eAATase finds no evidence for an M* species but uncovers a partially denatured dimeric form, D*, that is unpopulated in GdnHCl. Thus, the unfolding process is a function of the employed denaturant. D* retains less than 50% of the native secondary structure (circular dichroism), conserves significant quaternary and tertiary interactions, and unfolds cooperatively (mD*<==>U = 3.4 +/- 0.3 kcal mol-1 M-1). Therefore, the following equilibria obtain in the denaturation of apo-eAATase: D <==> 2M 2M* <==> 2U in GdnHCl and D <==> D* <==> 2U in urea (D = native dimer, M = folded monomer, and U = unfolded state). The free energy of unfolding of apo-eAATase (D <==> 2U) is 36 +/- 3 kcal mol-1, while that for the D* 2U transition is 24 +/- 2 kcal mol-1, both at 1 M standard state and pH 7.5.  相似文献   

14.
High hydrostatic pressure coupled with fluorescence polarization has been used to investigate protein subunit interactions and protein-operator association in lac repressor labeled with a long-lived fluorescent probe. On the basis of observation of a concentration-dependent sigmoidal decrease in the dansyl fluorescence polarization, we conclude that application of high hydrostatic pressure results in dissociation of the lac repressor tetramer. The 2-fold decrease in the rotational relaxation time and the high-pressure plateau are consistent with a tetramer to dimer transition. The volume change for tetramer dissociation to dimer is -82 +/- 5 mL/mol. The dissociation constant calculated from the data taken at 4.5 degrees C is 4.3 +/- 1.3 nM. The tetramer dissociation constant increases by a factor of 3 when the temperature is raised from 4.5 to 21 degrees C. A very small effect of inducer binding on the subunit dissociation is observed at 4.5 degrees C; the Kd increases from 4.5 to 7.1 nM. At 21 degrees C, however, inducer binding stabilizes the tetramer by approximately 0.8 kcal/mol. Pressure-induced monomer formation is indicated by the curves obtained upon raising the pH to 9.2. The addition of IPTG shifts the pressure transition to only slightly higher pressures at this pH, indicating that the stabilization of the tetramer by inducer is not as marked as that observed at pH 7.1. From the decrease in the polarization of the dansyl repressor-operator complexes, we also conclude that the application of pressure results their dissociation and that the volume change is large in absolute value (approximately 200 mL/mol). The lac repressor-operator complex is more readily dissociated upon the application of pressure than the tetramer alone, indicating that operator binding destabilizes the lac repressor tetramer.  相似文献   

15.
The molecular weights of different aggregational states of phosphoenolpyruvate carboxylase purified from the leaves of Zea mays have been determined by measurement of the molecular diameter using a Malvern dynamic light scattering spectrometer. Using these data to identify the monomer, dimer, tetramer, and larger aggregate(s) the effect of pH and various ligands on the aggregational equilibria of this enzyme have been determined. At neutral pH the enzyme favored the tetrameric form. At both low and high pH the tetramer dissociated, followed by aggregation to a "large" inactive form. The order of dissociation at least at low pH appeared to be two-step: from tetramer to dimers followed by dimer to monomers. The monomers then aggregate to a large aggregate, which is inactive. The presence of EDTA at pH 8 protected the enzyme against both inactivation and large aggregate formation. Dilution of the enzyme at pH 7 at room temperature results in driving the equilibrium from tetramer to dimer. The presence of malate with EDTA stabilizes the dimer as the predominant form at low protein concentrations. The presence of the substrate phosphoenolpyruvate alone and with magnesium and bicarbonate induced formation of the tetramer, and decreased the dissociation constant (Kd) of the tetrameric form. The inhibitor malate, however, induced dissociation of the tetramer as evidenced by an increase in the Kd of the tetramer.  相似文献   

16.
The thermal stability of the methionine repressor protein from Escherichia coli (MetJ) has been examined over a wide range of pH (pH 3.5-10) and ionic strength conditions using differential scanning calorimetry. Under reducing conditions, the transitions are fully reversible, and thermograms are characteristic of the cooperative unfolding of a globular protein with a molecular weight corresponding to the MetJ dimer, indicating that no dissociation of this dimeric protein occurs before unfolding of the polypeptide chains under most conditions. In the absence of reducing agent, repeated scans in the calorimeter show only partial reversibility, though the thermodynamic parameters derived from the first scans are comparable to those obtained under fully reversible conditions. The protein is maximally stable (Tm 58.5 degrees C) at about pH 6, close to the estimated isoelectric point, and stability is enhanced by increasing ionic strength in the range I = 0.01-0.4 M. The average calorimetric transition enthalpy (delta Hm) for the dimer is 505 +/- 28 kJ mol-1 under physiological conditions (pH 7, I = 0.125, Tm = 53.2 degrees C) and shows a small temperature dependence which is consistent with an apparent denaturational heat capacity change (delta Cp) of about +8.9 kJ K-1 mol-1. The effects of both pH and ionic strength on the transition temperature and free energy of MetJ unfolding are inconsistent with any single amino acid contribution and are more likely the result of more general electrostatic interactions, possibly including significant contributions from electrostatic repulsion between the like-charged monomers which can be modeled by a Debye-Hückel screened potential.  相似文献   

17.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

18.
The hemocyanin of the channeled whelk, Busycon canaliculatum, is a multisubunit protein with a molecular weight close to 9 X 10(6). The increase in pH above neutrality and the addition of 0-5 M urea and 0-2 M GdnHCl is found to dissociate the whole molecules to half-molecules and smaller dimeric and monomeric fragments of one-tenth and one-twentieth mass of the parent hemocyanin. The molecular weight transitions investigated at constant protein concentration of 5 X 10(-2) g X l-1 show no clearly discernible plateau regions, where essentially only half-molecules and one-tenth molecules are present. The ultracentrifugation patterns in much of the dissociation region produced by urea at pH 6.9 suggests the presence of three distinct components consisting of whole molecules, half-molecules and largely one-tenth molecular weight fragments. At pH 8.2 and higher, where whole molecules are largely absent, the effects of urea on the dissociation of half-molecules to tenths and tenth-molecules to twentieth molecule was investigated by means of light scattering. Analysis of the urea data based on a decamer to dimer and dimer to monomer scheme of dissociation used in our earlier studies gave apparent estimates of about 90 amino acid groups at the contact areas of the dimers in the half-molecules and 110 groups at the monomer contacts forming the dimers. The latter relatively large estimate of groups suggests that the dissociation of the tenth molecules or dimers must occur by longitudinal splitting of the contact areas along both the folded domains and the connecting chain segments of the twentieth molecules. Circular dichroism, absorbance and viscosity data suggest that the secondary structure and conformation of the folded domains of the hemocyanin subunits are largely retained at both high pH and in 3-8 M urea solutions. The molecular weights at pH 9.0-10.6 and in 3-8 M urea are found to be (4.2-4.7) X 10(5), close to one-twentieth of the mass of the parent hemocyanin. Denaturation and unfolding of the subunit domains is observed between 3 and 6 M GdnHCl solutions, as evidenced by the abolition of the characteristic copper absorbance in the neighborhood of 346 nm and the relatively pronounced changes in circular dichroism at 222 nm and intrinsic viscosity. The further decrease in molecular weights to about (2.6-3.2) X 10(5), below one-twentieth of the mass of hemocyanin suggests the presence of hidden breaks or scissions in the polypeptide chains suffered during isolation, which become exposed as a result of complete unfolding in GdnHCl solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Using size-exclusion high-performance liquid chromatography, it is shown that phosphoenolpyruvate carboxylase from Crassula argentea, a crassulacean acid metabolism (CAM) plant, exists primarily in the form of a tetramer of a 100-kDa subunit at night and as a dimer of the same subunit during the day. The tetrameric enzyme from night leaves is not inhibited by malate, while the dimeric form from day leaves can be completely inhibited by malate. The purified day, or dimer, form of the enzyme can be converted to the tetramer by concentration and exposure to Mg2+. When thus converted, the tetramer is insensitive to malate inhibition, and is more strongly activated by glucose 6-phosphate than the dimer. The purified night, or tetramer, form is converted to the dimer by incubation for 60 min at pH 8.2. This enzyme may also be converted to the dimer by adding 1.5 mM malate to the elution buffer, but preincubation for 15 min with phosphoenolpyruvate prevents disaggregation when chromatographed with buffer containing malate. Preincubation with 1mM EDTA and subsequent chromatography with buffer containing malate shows a progressive dissociation of the tetrameric form with increasing time of preincubation. The implications of these observations for the diurnal regulation of phosphoenolpyruvate carboxylase in CAM metabolism are discussed.  相似文献   

20.
Experimental conditions favouring the dissociation of tetrameric rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase into active monomers were elaborated. The urea-induced dissociation of the tetramer was shown to be a stepwise process (in 2 M urea only dimers are formed; an increase in urea concentration up to 3 M causes the splitting of the dimers into monomers). The specific activity of immobilized monomers in the glyceraldehyde-3-phosphate oxidation reaction does not differ from that of the parent immobilized tetrameric form. The tetrameric enzyme molecule binds the coenzyme with a negative cooperativity (the first two NAD+ molecules bind with KD below 0.1 microM; for the third and fourth molecules the dissociation constant was determined to be equal to 5.5 +/- 1.5 microM (50 mM medinal buffer, 10 mM sodium phosphate, pH 8.2). The cooperativity of NAD+ binding is preserved in the immobilized preparation of tetrameric dehydrogenase. The immobilized monomers bind NAD+ with KD of 1.6 +/- 1.0 microM. The experimental results are consistent with the hypothesis according to which the association of catalytically active subunits into a tetramer changes their coenzyme-binding properties in such a way that the first two NAD+ molecules bind more firmly to a tetramer than to a monomer, whereas the third and the fourth NAD+ molecules bind less firmly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号