首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
瞬时受体电位通道研究进展   总被引:5,自引:0,他引:5  
瞬时受体电位通道(TRP channels)是位于细胞膜上的一类重要的阳离子通道超家族.根据氨基酸序列的同源性,将已发现的28种哺乳动物,TRP通道分为:TRPC、TRPV、TRPM、TRPA、TRPP和TRPML 6个亚家族.所有的TRP通道都具有6次跨膜结构域.不同的TRP通道对钙离子和钠离子选择性不同.TRP通道分布广泛,调节机制各异,通过感受细胞内外环境的各种刺激,参与痛温觉、机械感觉、味觉的发生和维持细胞内外环境的离子稳态等众多生命活动.  相似文献   

2.
新型γ-氨基丁酸受体:GABAc受体   总被引:8,自引:0,他引:8  
众多的证据表明,在神经系统,特别是视觉神经通路中,除通常的GABAA和GABAB受体之外,还存在着一种具有不同药理特性的GABAC受体。这种受体不为荷包牡丹碱(bicuculline)所阻遏,亦不为氯苯氨丁酸(baclofen)所激活,在激活后并不显示失敏现象,可能在视网膜中视杆通路的信,自传递和调控中起重要作用。  相似文献   

3.
陈健  周度金 《生命的化学》2001,21(6):487-489
脂溶性激素对生物的生长、发育、分化、器官的生理活动等方面有重要的影响 ,这类激素能直接穿膜进入胞内 ,通过与胞质或核内的特异受体结合而调节基因的表达。 1 988年 ,Giguere等[1] 发现一类新的核受体 (hu manestrogen receptorrelatedreceptor ,hERR) ,由于发现之初未鉴定到其相应的配体 ,称为孤儿受体。核受体大致可分 4个家族 :类固醇类受体、RXR异二聚类受体、同二聚类孤儿受体和单体类孤儿受体 ,绝大多数孤儿受体属于第三、四类。近年陆续鉴定到一些孤儿受体的配体 ,说明孤儿受…  相似文献   

4.
田萌  吴媛媛  谢锋  卫培峰  陈琳  李敏 《生命科学》2020,32(5):453-460
瞬时受体电位(TRP)通道是一类重要的非选择性阳离子通道,其家族成员众多,参与多种生理病理过程。其中,TRP通道的异常表达及功能改变与心脑血管疾病的发生发展密切相关。近年研究发现,通过拮抗或者激活TRP通道可以调节血管内皮和血管平滑肌功能,参与心脑血管疾病的调控。该文主要从TRP通道的结构及各亚家族蛋白基于血管内皮和血管平滑肌对心脑血管系统疾病的作用及机制作一综述,为心脑血管疾病的防治提供新思路。  相似文献   

5.
N型乙酰胆碱受体通道的脱敏表现为通道开放概率的衰减,而通道开放时间和开放电流的变化水大,提示脱敏是全或无的,当「Ca^2+」0=12.0mmol/L时,脱敏50%约用时11.5分钟;「Ca^2+」0=0mmol/L时,脱敏50%药用时1.8分钟。证明在钙离子浓度较低的情况下,N型乙酰胆碱受体通道的脱敏较快,而下离子浓度较高时,通道脱敏慢,提示钙离子对通道从脱敏态到静息态的恢复有促进作用,并且对钙离  相似文献   

6.
磺脲类受体研究进展   总被引:1,自引:0,他引:1  
磺脲类受体隶属ATP结合蛋白家族,现已发现它与ATP敏感性钾通道有关,对其结构和生理功能的研究已形成一个新的热点。文章介绍了国外近几年关于磺脲类受体分子结构,基因表达以及与ATP敏感性钾通道在结构和功能上的关系的研究进展。  相似文献   

7.
促性腺激素FSH/LH在脊椎动物的生殖调控中占据中心地位,其生理功能主要通过其特异性受体FSH-R/LH-R所介导.研究表明,鱼类FSH-R和LH-R主要在性腺表达,也在脑、肝脏、肾脏、脾脏等部位表达,主要调控生殖细胞的成熟和最后的排卵及排精.  相似文献   

8.
钾离子通道是植物钾离子吸收的重要途径之一。Shaker K+家族通道是K+通道中最早发现、且研究最深入的K+通道家族。近年来,已从多种植物或同种植物的不同组织器官中分离得到多个Shaker K+钾离子通道基因,如AKT1,AtKC1,QsAKT1,GORK,AKT2等。从结构、表达部位、生理功能和调控等方面介绍了植物Shaker K+通道的研究进展。  相似文献   

9.
NMDA受体通道的结构与功能   总被引:6,自引:0,他引:6  
近来用分子克隆方法对N-甲基-门冬氨酸受体(NMDA受体)通道的分子结构进行了广泛的研究.这些研究清楚地显示了NMDA受体通道的分子多样性,为NMDA受体通道的在体功能多样性提供了基础.已获得的克隆为研究这些受体通道分布和生理作用提供了有价值的工具.  相似文献   

10.
Wu P  Wang MX  Luan HY 《生理科学进展》2011,42(4):296-298
Cl-通道参与许多生理过程,包括跨上皮细胞的离子吸收与分泌、平滑肌与骨骼肌收缩、神经元兴奋性、器官感知功能及细胞容积调节等.目前对于许多类型Cl-通道的分子构型尚不清楚.新近三个独立的研究小组同时发现Ano1是一种与钙离子激活氯通道(calcium-activated chloridechannels,CaCCs)活性密切相关的膜蛋白.Ano1与其它9个成员共同组成Anoctamin家族.所有Anoctamin蛋白都具有类似结构,推测含8个跨膜结构域以及胞质N-末端和C-末端.Ano1和Ano2的表达都与CaCCs类似,但其它Anoctamin蛋白的作用仍然未知.  相似文献   

11.
Synaptosomes and synaptoneurosomes were prepared from the cerebral cortex of control rats and of rats treated with gabaculine, gamma-vinylGABA (GVG), hydrazine and isonicotinic acid hydrazide (INH). An inverse relationship was observed between the GABA content of the synaptoneurosomes and the muscimol-stimulated chloride ion uptake by the organelles. The relationship held over an extensive range of experimental conditions including different drugs, different dosage levels of the same drug, different time intervals after administration of the same drug, and both single and multiple injections of drugs. The results indicated that the phenomenon was associated with the neurosome component of the preparation, and raised the possibility that GABA levels within the postsynaptic cell might regulate the functioning of the GABAA receptor complexSpecial issue dedicated to Dr. Eugene Roberts.  相似文献   

12.
This study investigated the pharmacological profile of cyclodiene resistance in Drosophila melanogaster and the mode of action of a phenylpyrazole insecticide, JKU 0422. Toxicological studies were performed with a sucrose bait assay containing the synergist piperonyl butoxide. The Maryland strain of D. melanogaster was resistant to dieldrin, lindane, picrotoxinin, TBPS, p-CN-TBOB, and JKU 0422. In contrast, this strain was susceptible to cypermethrin and the avermectins MK-243, abamectin, and abamectin 8,9-oxide. Neurophysiological studies showed that both TBPS and JKU 0422 reversed the inhibitory action of GABA in central nerve preparations from susceptible D. melanogaster. However, the response to these compounds was attenuated in nerve preparations from the resistant Maryland strain, which indicated that the resistance was expressed at the level of the nerve. Topical toxicity bioassays with JKU 0422 on susceptible (CSMA) and cyclodiene-resistant (LPP) strains of German cockroach revealed a resistance ratio of 553-fold for this compound. These studies demonstrate that cyclodiene resistance in D. melanogaster confers broad cross resistance toward compounds thought to block the GABA-gated chloride channel in a manner similar to the cyclodienes. Moreover, the cross resistance extends to JKU 0422, and resistance to this compound is also present in a strain of cyclodiene-resistant German cockroach. These toxicological results, along with the neurophysiological studies, confirm that JKU 0422 has a mode of action that is similar to the cyclodienes and TBPS. These findings suggest that the introduction and use of new chloride channel antagonists as insecticides should be managed carefully in order to prevent the rapid development of resistance in the field. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The role of diversity of the AMPA receptor subtypes, their property and function in the principal cells and interneurones of hippocampus, cerebellum and striatum, are discussed. The data obtained suggest that drugs capable of blocking an open channel of the AMPA receptor may be used as a tool for identification of the AMPA receptor subtypes and for elucidating their function under both normal and pathological conditions.  相似文献   

14.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

15.
A simple method for the determination of the proportion of true GABA within labeled GABA used for membrane binding assay is presented. The method is intended for the assessment of the integrity of refrigerator (+4°C) stored labeled neurotransmitter. Its application allows a precise determination of the binding parameters.  相似文献   

16.
GABAA receptors (GABAAR) mediate inhibitory neurotransmission in the human brain. Neurons modify subunit expression, cellular distribution and function of GABAAR in response to different stimuli, a process named plasticity. Human lymphocytes have a functional neuronal-like GABAergic system with GABAAR acting as inhibitors of proliferation. We here explore if receptor plasticity occurs in lymphocytes. To this end, we analyzed human T lymphocyte Jurkat cells exposed to different physiological stimuli shown to mediate plasticity in neurons: GABA, progesterone and insulin. The exposure to 100 μM GABA differently affected the expression of GABAAR subunits measured at both the mRNA and protein level, showing an increase of α1, β3, and γ2 subunits but no changes in δ subunit. Exposure of Jurkat cells to different stimuli produced different changes in subunit expression: 0.1 μM progesterone decreased δ and 0.5 μM insulin increased β3 subunits. To identify the mechanisms underlying plasticity, we evaluated the Akt pathway, which is involved in the phosphorylation of β subunits and receptor translocation to the membrane. A significant increase of phosphorylated Akt and on the expression of β3 subunit in membrane occurred in cells exposed 15 h to GABA. To determine if plastic changes are translated into functional changes, we performed whole cell recordings. After 15 h GABA-exposure, a significantly higher percentage of cells responded to GABA application when compared to 0 and 40 h exposure, thus indicating that the detected plastic changes may have a role in GABA-modulated lymphocyte function.  相似文献   

17.
Molecular biological approaches to the GABAa receptor have resulted in new insights into the structure and pharmacology of this complex. It is known that the GABAa complex is a heterooligomer composed of multiple subunits which contain binding sites for the GABA, benzodiazepines and barbiturates. These subunits also contain regulatory sites for phosphorylation by intracellular kinases. There appear to be regional differences in the expression of the various subunits for the GABAa receptor complex. The functional significance of molecular heterogeneity is not yet known but it is expected that regional differences may result in pharmacologically diverse responses. Studies on the effects of chronic administration of diazepam have clearly delineated such regional differences. Chronic benzodiazepine administration results in the development of subsensitivity to the electrophysiological actions of GABA in the dorsal raphe, but not in GABA receptive neurons of the substantia nigra pars reticulata. Such data is consistent with regional heterogeneity in response to chronic benzodiazepine, exposure. It is hoped that by understanding GABAa receptor heterogeneity, and its molecular basis, we can improve the, existing receptor subtype specificity and pharmacology of the benzodiazepines.  相似文献   

18.
Confocal laser microscopy, in conjunction with carbocyanine dyes and calcium-sensitive fluorescent indicators, was used in slices and explant cultures of developing cerebellum to study cellular mechanisms underlying a motility of neuronal cell migration. The results indicate that a combination of voltage- and ligand-activated ion channels cooperatively regulates Ca2+ influx into the migrating cells. We suggest that molecules, present in the local cellular milieu, affect cell motility by activating specific ion channels and second messengers that influence polymerization of stiff and contractile cytoskeletal proteins. This early interaction between postmitotic neurons and surrounding cells controls the rate of their movements, sculpts their shapes, establishes their positions, and, therefore, indirectly determines their identities to prior formation of synaptic connections. © 1995 John Wiley Sons, Inc.  相似文献   

19.
20.
RNA editing by select adenosine deamination (A-to-I editing) alters functional determinants in certain ion channels and neurotransmitter receptors in vertebrates and invertebrates. In most cases, edited and unedited versions of a given receptor/channel co-exist to expand the functional space of the receptor population. Recent studies have characterized K(+) channels in squid that are edited at multiple positions, revealed a role for Q/R site editing in AMPA receptor assembly, and demonstrated a link between serotonin levels and the extent of editing of a mammalian serotonin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号