首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PAT family of proton-dependent amino acid transporters has recently been identified at the molecular level. This paper describes the structural requirements in substrates for their interaction with the cloned murine intestinal proton/amino acid cotransporter (PAT1). By using Xenopus laevis oocytes as an expression system and by combining the two-electrode voltage clamp technique with radiotracer flux studies, it was demonstrated that the aliphatic side chain of L-α-amino acids substrates can consist maximally of only one CH2-unit for high affinity interaction with PAT1. With respect to the maximal separation between the amino and carboxyl groups, only two CH2-units, as in γ-aminobutyric acid (GABA), are tolerated. PAT1 displays no or even a reversed stereoselectivity, tolerating serine and cysteine only in the form of the D-enantiomers. A methyl-substitution of the carboxyl group (e.g. O-methyl-glycine) markedly diminishes substrate affinity and transport rates, whereas methyl-substitutions at the amino group (e.g. sarcosine or betaine) have only minor effects on substrate interaction with the transporter binding site. Furthermore, it has been shown (by kinetic analysis of radiolabelled betaine influx and inhibition studies) that the endogenous PAT system of human Caco-2 cells has very similar transport characteristics to mouse PAT1. In summary, one has defined the structural requirements and limitations that determine the substrate specificity of PAT1. A critical recognition criterion of PAT1 is the backbone charge separation distance and side chain size, whereas substitutions on the amino group are well tolerated.  相似文献   

2.
The PAT family of proton-dependent amino acid transporters has recently been identified at the molecular level. This paper describes the structural requirements in substrates for their interaction with the cloned murine intestinal proton/amino acid cotransporter (PAT1). By using the Xenopus laevis oocytes as an expression system and by combining the two-electron voltage clamp technique with radiotracer flux studies, it was demonstrated that the aliphatic side chain of L-alpha-amino acids substrates can consist maximally of only one CH2-unit for high affinity interaction with PAT1. With respect to the maximal separation between the amino and carboxyl groups, only two CH2-units, as in gamma-aminobutyric acid (GABA), are tolerated. PAT1 displays no or even a reversed stereoselectivity, tolerating serine and cystein only in the form of D-enantiomers. A methyl-substitution of the carboxyl group (e.g. O-methyl-glycine) markedly diminishes substrate affinity and transport rates, whereas methyl-substitutions at the amino group (e.g. sarcosine or betaine) have only minor effects on substrate interaction with the transporter binding site. Furthermore, it has been shown (by kinetic analyses of radiolabelled betaine influx and inhibition studies) that the endogenous PAT system of human Caco-2 cells has very similar transport characteristics to mouse PAT1. In summary, one has defined the structural requirements and limitations thet determine the substrate specificity of PAT1. A critical recognition criterion of PAT1 is the backbone charge separation distance and the side chain size, whereas substitutions on the amino group are well tolerated.  相似文献   

3.
Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.  相似文献   

4.
Functional characterization of a novel mammalian zinc transporter, ZnT6   总被引:15,自引:0,他引:15  
We describe ZnT6, a new member of the CDF (cation diffusion facilitator) family of heavy metal transporters. The human ZNT6 gene was mapped at 2p21-22, while the mouse Znt6 was localized to chromosome 17. Overexpression of ZnT6 in both wild-type yeast and mutants that are deficient in cytoplasmic zinc causes growth inhibition, but this inhibition is abolished in mutant cells with high cytoplasmic zinc. ZnT6 may function in transporting the cytoplasmic zinc into the Golgi apparatus as well as the vesicular compartment, as evidenced by its overlapping intracellular localization with TGN38 and transferrin receptor in the normal rat kidney cells. We also demonstrate that the intracellular distributions of ZnT6 as well as ZnT4 are regulated by zinc in the normal rat kidney cells. The results from this report, combined with those from other studies, suggest that the intracellular zinc homeostasis is mediated by many ZnT proteins, which act in tissue-, cell-, and organelle-specific manners.  相似文献   

5.
The PAT2 transporter has been shown to act as an electrogenic proton/amino acid symporter. The PAT2 cDNA has been cloned from various human, mouse and rat tissues and belongs to a group of four genes (pat1 to pat4) with PAT3 and PAT4 still resembling orphan transporters. The first immunolocalization studies demonstrated that the PAT2 protein is found in the murine central nervous system in neuronal cells with a proposed role in the intra and/or intercellular amino acid transport. Here we provide a detailed analysis of the transport mode and substrate specificity of the murine PAT2 transporter after expression in Xenopus laevis oocytes, by electrophysiological techniques and flux studies. The structural requirements to the PAT2 substrates - when considering both low and high affinity type substrates - are similar to those reported for the PAT1 protein with the essential features of a free carboxy group and a small side chain. For high affinity binding, however, PAT2 requires the amino group to be located in an alpha-position, tolerates only one methyl function attached to the amino group and is highly selective for the L-enantiomers. Electrophysiological analysis revealed pronounced effects of membrane potential on proton binding affinity, but substrate affinities and maximal transport currents only modestly respond to changes in membrane voltage. Whereas substrate affinity is dependent on extracellular pH, proton binding affinity to PAT2 is substrate-independent, favouring a sequential binding of proton followed by substrate. Maximal transport currents are substrate-dependent which suggests that the translocation of the loaded carrier to the internal side is the rate-limiting step.  相似文献   

6.
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H+/sialic acid co-transport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Δψ-driven aspartate and glutamate transport activity and H+/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H+/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Δ268SSLRN272 still showed normal levels of Δψ-driven aspartate and glutamate transport even though H+/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions.  相似文献   

7.
Parvulins belong to a family of peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze the cis/trans conformations of prolyl-peptidyl bonds. Herein, we characterized two novel parvulins, TbPIN1 and TbPAR42, in Trypanosoma brucei. TbPIN1, a 115 amino-acid protein, contains a single PPIase domain but lacks the N-terminal WW domain. Using NMR spectroscopy, TbPIN1 was found to exhibit PPIase activity toward a phosphorylated substrate. Overexpression of TbPIN1 can rescue the impaired temperature-sensitive phenotype in a mutant yeast strain. TbPAR42, containing 383 amino acids, comprises a novel FHA domain at its N terminus and a C-terminal PPIase domain but is a non-Pin1-type PPIase. Functionally, a knockdown of TbPAR42 in its procyclic form results in reduced proliferation rates suggesting an important role in cell growth.  相似文献   

8.
The electrogenic action of the basic amino acid, l-arginine, has been compared with the action of the neutral amino acids, l-alanine and glycine, in mouse pancreatic acinar cells. All three amino acids cause membrane depolarization, but while the reversal potential for the action of the neutral amino acids is close to the calculated value of the Na equilibrium potential (+30 m V) the reversal potential for the l-arginine effects is +7 m V. The neutral amino acids exhibit mutual inhibition, but l-arginine did not inhibit the l-alanine-or glycine-evoked depolarization nor did the neutral amino acids inhibit the action of l-arginine. While l-alanine markedly depressed acetylcholine-evoked depolarization, l-arginine had no such effect. It is concluded that there are at least two quite different types of electrogenic amino acid action in pancreatic acinar cells.  相似文献   

9.
Molecular biology of mammalian amino acid receptors   总被引:4,自引:0,他引:4  
The amino acid receptor proteins are ubiquitous transducers of most excitatory and inhibitory synaptic transmission in the brain. In July 1987 two reports appeared describing the molecular cloning of a pair of subunits of the GABAA receptor (7) and one subunit of the glycine receptor (13). These papers sparked wide interest and led quickly to the concept of a ligand-gated receptor-ion channel superfamily that includes nicotinic acetylcholine receptors as well as certain amino acid receptors. The identification of additional subunits of each receptor followed; with the recent cloning of a kainate receptor subunit (14), only the NMDA receptor remains elusive. Several disciplines have been brought to bear on these receptor clones, including in situ hybridization and functional expression in Xenopus laevis oocytes and mammalian cell lines. In this review we compare cloning strategies that have been used for amino acid receptors and discuss structural similarities among the receptor subunits. Two findings that have arisen from molecular cloning and expression of these receptors receive special attention. First, the molecular heterogeneity of GABAA receptors is larger than expected from pharmacological studies of native receptors. Second, although the native receptors are thought to be heterooligomers, much like the model proposed for the nicotinic receptors, some individual amino acid receptor subunits can form functional receptor channels, presumably in a homomeric configuration. This review focuses, therefore, on what we have learned from cloning efforts about amino acid receptors and what might lie ahead in this field.  相似文献   

10.
11.
12.
13.
We have investigated the functional role of Cl(-) in the human Na(+)/Cl(-)/gamma-aminobutyric acid (GABA) and Na(+)/glucose cotransporters (GAT1 and SGLT1, respectively) expressed in Xenopus laevis oocytes. Substrate-evoked steady-state inward currents were examined in the presence and absence of external Cl(-). Replacement of Cl(-) by gluconate or 2-(N-morpholino)ethanesulfonic acid decreased the apparent affinity of GAT1 and SGLT1 for Na(+) and the organic substrate. In the absence of substrate, GAT1 and SGLT1 exhibited charge movements that manifested as pre-steady-state current transients. Removal of Cl(-) shifted the voltage dependence of charge movements to more negative potentials, with apparent affinity constants (K(0.5)) for Cl(-) of 21 and 115 mm for SGLT1 and GAT1, respectively. The maximum charge moved and the apparent valence were not altered. GAT1 stoichiometry was determined by measuring GABA-evoked currents and the unidirectional influx of (36)Cl(-), (22)Na(+), or [(3)H]GABA. Uptake of each GABA molecule was accompanied by inward movement of 2 positive charges, which was entirely accounted for by the influx of Na(+) in the presence or absence of Cl(-). Thus, the GAT1 stoichiometry was 2Na(+):1GABA. However, Cl(-) was transported by GAT1 because the inward movement of 2 positive charges was accompanied by the influx of one Cl(-) ion, suggesting unidirectional influx of 2Na(+):1Cl(-):1GABA per transport cycle. Activation of forward Na(+)/Cl(-)/GABA transport evoked (36)Cl(-) efflux and was blocked by the inhibitor SKF 89976A. These data suggest a Cl(-)/Cl(-) exchange mechanism during the GAT1 transport cycle. In contrast, Cl(-) was not transported by SGLT1. Thus, in both GAT1 and SGLT1, Cl(-) modulates the kinetics of cotransport by altering Na(+) affinity, but does not contribute to net charge transported per transport cycle. We conclude that Cl(-) dependence per se is not a useful criterion to classify Na(+) cotransporters.  相似文献   

14.
Electrophysiological and biophysical analyses were used to compare the partial and complete transport cycles of the intestinal oligopeptide transporter PepT1 among three species (seabass, zebrafish and rabbit). On the whole, the presteady-state currents of the fish transporters were similar to each other. Rabbit PepT1 differed from the fish transporters by having slower-decaying currents, and the charge vs. potential (Q/V) and time constant vs. potential (τ/V) curves shifted to more positive potentials. All of the isoforms were similarly affected by external pH, showing acidity-induced slowing of the transients and positive shifts in the Q/V and τ/V curves. Analysis of the pH-dependence of the unidirectional rates of the intramembrane charge movement suggested that external protonation of the protein limits the speed of this process in both directions. The complete cycle of the transporter was studied using the neutral dipeptide Gly-Gln. Michaelis-Menten analysis confirmed that, in all species, acidity significantly increases the apparent affinity for the substrate but does not strongly impact maximal transport current. Simulations using a kinetic model incorporating the new findings showed good agreement with experimental data for all three species, both with respect to the presteady-state and the transport currents.  相似文献   

15.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.  相似文献   

16.
A new eukaryotic nutrient amino acid transporter has been cloned from an epithelium that is exposed to high voltages and alkaline pH. The full-length cDNA encoding this novel CAATCH1 (cation-anion-activated Amino acid transporter/channel) was isolated using a polymerase chain reaction-based strategy, and its expression product in Xenopus oocytes displayed a combination of several unique, unanticipated functional properties. CAATCH1 electrophysiological properties resembled those of Na(+),Cl(-)-coupled neurotransmitter amine transporters, although CAATCH1 was cloned from a gut absorptive epithelium rather than from an excitable tissue. Amino acids such as l-proline, l-threonine, and l-methionine elicited complex current-voltage relationships in alkaline pH-dependent CAATCH1 that were reminiscent of the behavior of the dopamine, serotonin, and norepinephrine transporters (DAT, SERT, NET) in the presence of their substrates and pharmacological inhibitors such as cocaine or antidepressants. These I-V relationships indicated a combination of substrate-associated carrier current plus an independent CAATCH1-associated leakage current that could be blocked by certain amino acids. However, unlike all structurally related proteins, CAATCH1 activity is absolutely independent of Cl(-). Unlike related KAAT1, CAATCH1 possesses a methionine-inhibitable constitutive leakage current and is able to switch its narrow substrate selectivity, preferring threonine in the presence of K(+) but preferring proline in the presence of Na(+).  相似文献   

17.
Purification and characterization of a novel mammalian endoribonuclease   总被引:1,自引:0,他引:1  
Endonuclease-mediated mRNA decay appears to be a common mode of mRNA degradation in mammalian cells, but yet only a few mRNA endonucleases have been described. Here, we report the existence of a second mammalian endonuclease that is capable of cleaving c-myc mRNA within the coding region in vitro. This study describes the partial purification and biochemical characterization of this enzyme. Five major proteins of approximately 10-35 kDa size co-purified with the endonuclease activity, a finding supported by gel filtration and glycerol gradient centrifugation analysis. The enzyme is an RNA-specific endonuclease that degrades single-stranded RNA, but not double-stranded RNA, DNA or DNA-RNA duplexes. It preferentially cleaves RNA in between the pyrimidine and purine dinucleotides UA, UG, and CA, at the coding region determinant (CRD) of c-myc RNA. The enzyme generates products with a 3'hydroxyl group, and it appears to be a protein-only endonuclease. It does not possess RNase A-like activity. The enzyme is capable of cleaving RNAs other than c-myc CRD RNA in vitro. It is Mg(2+)-independent and is resistant to EDTA. The endonuclease is inactivated at and above 70 degrees C. These properties distinguished the enzyme from other previously described vertebrate endonucleases.  相似文献   

18.
Summary High performance liquid chromatography was used to analyze the amino acid composition of cells. A total of 17 amino acids was analyzed. This method was used to compare the amino acid compositions of the following combinations: primary culture and established cells, normal and transformed cells, mammalian and bacterial cells, andEscherichia coli andStaphylococcus aureus. The amino acid compositions of mammalian cells were similar, but the amino acid compositions ofEscherichia coli andStaphylococcus aureus differed not only from mammalian cells, but also from each other. It was concluded that amino acid composition is almost independent of cell establishment and cell transformation, and that the amino acid compositions of mammalian and bacterial cells differ. Thus, it is likely that changes in amino acid composition due to cell transformation or species differences between mammalian cells are negligible compared with the differences between mammalian and bacterial cells, which are more distantly related.  相似文献   

19.
The amino acid composition of mammalian collagen and gelatin   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号