首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Linum usitatissimum protein bodies are observed in the cellsof endosperm and embryo. They originate in vacuoles. Proteinbodies have both crystalloid and globoid inclusions. The breakdownoccurs by vacuolization and fragmentation. Linum usitatissimum, seed, embryo, endosperm, protein bodies  相似文献   

2.
Vacuolar protein in apical and flower-petal cells   总被引:2,自引:2,他引:0  
L. K. Shumway  V. Cheng  C. A. Ryan 《Planta》1972,106(4):279-290
Summary Vegetative apices, floral apices and flower petals of five Solanaceae (potato, tomato, tobacco, petunia and nightshade) and of corn and Nigella were examined with an electron microscope for the presence of protein bodies in the cell vacuoles. Electron-dense bodies were found in vacuoles of all plants investigated but not in every tissue examined. The bodies observed in the apices are similar to the protein bodies previously found in tomato leaves where they appear to be related to the presence of chymotrypsin inhibitor I protein (Shumway et al., 1970). The bodies appeared in very young cells in small vacuoles, disappearing as the cell matured. They are apparently related to the growth and development of the new cells. The results suggest that plants may regulate specific proteins within the apical region through selective synthesis and degradation of proteins accompanied by compartmentalization in the vacuole.Scientific Paper No. 3822, College of Agriculture, Washington State University, Pullman, Project 1791. This investigation was supported in part by the State of Washington Initiative Measure 171 funds, the Graduate School Research funds, by the U.S. Department of Agriculture, Cooperative State Research Service Grant 915-15-29, and U.S. Public Health Service Grant 2K3-GM-17059.Program in Genetics and Department of Botany.Program in Genetics.  相似文献   

3.
In the present investigation, we examined the role of trophoblast and parietal endoderm cells in the synthesis of carbohydrate-containing components of Reichert's membrane. To eliminate the function of Reichert's membrane as a filter between maternal and embryonal tissues we carried out our examination under in vitro conditions. Parietal yolk sac from mouse embryos on day 9 post coitum (p.c.) were cultivated for 0 to 5 days. Because tannic acid enables a complex formation between carbohydrates and osmium we chose the fixation with this acid for the ultrastructural study. Electron microscopy showed that for assembly of Reichert's membrane, trophoblast cells produce and then release components that were detected as tannic acid-positive granules both in the Reichert's membrane and in the vacuoles of the trophoblast cells. To localize specific carbohydrates we used postembedding-gold-lectin histochemistry on LR-GoldR-embedded tissues. Strong binding sites for the lectins WGA (Triticum vulgare), RCA I (Ricinus communis) and Con A (Canavalia ensiformis) were observed in Reichert's membrane and trophoblast cells but not in the parietal endoderm cells. The LTA (Lotus tetragonolobus)-binding pattern was positive in the membrane and its adjacent cells but that of the LFA (Limax flavus) was negative in the parietal endoderm cells and very weak in Reichert's membrane and trophoblast cells. Our results demonstrate that trophoblast cells are involved in the construction of Reichert's membrane through the production and release of specific glycoconjugates.  相似文献   

4.
Summary The appearance of the rat epididymal epithelium changed when it was perfused in vivo through the lumen with unphysiologically high sodium ion concentrations; dilatation of intercellular spaces (ICS) at threshold concentrations of 30mM-Na+ in the cauda and about 55mM-Na+ in the corpus was associated with absorption of water from the lumen. Despite the distended ICS, junctional complexes appeared intact, and their integrity was confirmed by the exclusion of luminal horseradish peroxidase (HRP) from the ICS, and by demonstrating that circulating [3H]inulin did not enter the lumen. Smooth ER and lipid droplets in the principal cells of the corpus epididymidis were well maintained, and the preservation of granular ER in principal cells of the cauda epididymidis lent morphological support to the continued secretion of protein in this segment. However, occasional distension or involution of inner Golgi cisternae was evident in principal cells after 3–6 h perfusion. In contrast to multivesicular bodies of principal cells, the apical and basal vacuoles characteristic of clear cells changed in size with different perfusing solutions. When low Na+ concentrations were perfused large translucent vacuoles were frequently found in the apical cytoplasm of clear cells in the corpus and cauda epididymidis, and filled vacuoles became larger and showed a decrease in content density in the cauda epididymidis. These large vacuoles were absent from tissue perfused with high Na+ concentrations. Normal pinocytotic activity of both cell types was demonstrated by perfusing HRP which was taken up by the normal route in principal cells, with some transfer to the Golgi cisternae. By far the most HRP was accumulated in clear cell vacuoles irrespective of the composition of the perfusing solution.  相似文献   

5.
Summary Haynaldia villosa is a wild grass belonging to the tribe Triticeae, which includes important crops such as wheat, barley, and rye. The alcohol-soluble proteins ofH. villosa have extensive immunological relatedness with wheat prolamines as visualized by Western blot analysis. Amorphous protein inclusions surrounded by a limiting membrane are commonly found in the vacuoles of endosperm and subaleurone layers ofH. villosa seeds. A layer of cells just beneath the aleurone layer is rich in ER. Unlike that in other cell types, the ER in these cells is highly dilated and contains materials at its swollen distal ends. These materials are structurally similar to substances found in the protein bodies. Protein A-gold immunocytochemical localization studies employing antibodies against wheat prolamine confirmed that the inclusions found in the lumen of the ER do not contain prolamines. This observation indicates that the ER does not act as the site of prolamine accumulation inH. villosa. Protein bodies found in the vacuoles and the vesicles associated with the Golgi complexes were specifically labeled. This suggests that Golgi complexes mediate the transport of prolamines into vacuoles ofH. villosa endosperm cells, in a fashion analogous to that of other vacuolar proteins of dicotyledonous plants.  相似文献   

6.
Summary We observed three types of cells in the epithelial layer of the midgut of last instars of Pieris brassicae. The columnar and goblet cells degenerate during the second part of the last larval stage while the undifferentiated basal cells proliferate during this period and create the epithelium of the pupal midgut. The first morphological sign of involution is the formation of autophagic vacuoles and dense bodies in the cytoplasm of columnar and goblet cells which begins on day 4 of the stage. The number and size of autophagic vacuoles and dense bodies increase during the spinning period (85–96 h). Finally, at the end of the stage, the columnar and goblet cells become displaced by the growing pupal epithelium and reach the lumen where they disintegrate.Autophagocytosis was not seen in the cells during the feeding period (0–72 h). However, we observed many autophagic vacuoles in the columnar and goblet cells of 50-h-old instars 3 h after the administration of 30 g/g body weight of 20-hydroxyecdysone. The hormone treatment elevated by 100% the incorporation of 3H-leucine into the proteins of the midgut. Inhibitors of protein synthesis, cycloheximide and puromycin, in doses that supressed the incorporation of the amino acid by 60–70% either in hormone treated or untreated larvae, exerted diverse effects on the autophagic process. Puromycin did not block the hormone-induced formation of autophagic vacuoles while cycloheximide prevented it. Possible explanations for this diversity are discussed.  相似文献   

7.
Transport of 2,4-dinitrophenyl-S-glutathione (DNP-SG) and a fluorescent glutathione S-conjugate, bimane-S-glutathione (B-SG) was studied in the baker's yeasts (S. cerevisiae). Both conjugates were exported from the cells; the transport was inhibited by fluoride and vanadate like in mammalian cells. B-SG was also found to be accumulated in the vacuoles. The transport rate of DNP-SG outside the cell was higher in a vacuolar-deficient strain. A significant ATP-dependent uptake of (3H)-DNP-SG by vacuoles was found. These results indicate thatS. cerevisiaetransport glutathione S-conjugates both outside the cells and into the vacuoles.  相似文献   

8.
Protein bodies (PBs) of European black pine (Pinus nigra Arn.) were isolated from mature seeds. Extracted soluble matrix proteins and crystalloid proteins PBs proteins were investigated by SDS-PAGE electrophoresis in presence and absence of 2-mercaptoethanol. The proteins of molecular masses 16, 17, 18, 61 and 65 kDa were presented only in crystalloid protein samples. Only 15 kDa protein was present in soluble matrix proteins and not in crystalloid proteins. Another protein bands were present in both soluble matrix and crystalloid proteins. 20, 37, 38, 39 and 48 kDa proteins were strongly visible among crystalloid proteins. Bands of 23 and 32 kDa were more visible in soluble matrix protein samples. Different composition in crystalloid proteins was found in absence of 2-mercaptoethanol: no proteins with molecular mass 71 kDa and more proteins in soluble matrix. In case of crystalloid proteins we detected 7 protein bands in interval from 71 to 212 kDa.  相似文献   

9.
Summary Experiments were carried out to study the iodine metabolism of the endostyle of the larval lamprey which is considered to be homologous to the thyroid gland. Larval lampreys, ammocoetes of Lampetra japonica were intraperitoneally injected with 200 c of Na 125I; their endostyles were removed 30 minutes, 1, 2, 4, 6, 8 and 24 hours after the treatment. Type 1 and type 4 cells (Marine) were almost inactive in binding iodine. Silver grains appeared within 30 minutes after the injection over the apical cell membrane including the surfaces of microvilli and cilia of type 2 c and type 3 cells. These grains increased in number until 2 hours. A few of apical small vesicles of the same cells were labeled 1 to 2 hours after the injection. Small dense granules large dense bodies, and multivesicular bodies in the type 2 c and type 3 cells were labeled especially at 6 to 24 hours. The ratio in number of the labeled dense granules, or bodies to the unlabeled ones tended to increase markedly with time. Large or small vacuoles, dense or light in the cytoplasm of some type 5 cells which lack indications of protein-synthesis sign in the cytoplasm were labeled 6 to 24 hours after the injection of 125I, and the number of the labeled vacuoles increased with time. From these facts, we conclude that: (1) iodination of the thyroglobulin of type 2c and type 3 cells takes place almost entirely at the apical cell membrane region, (2) the thyroglobulin-like protein contained in the apical small vesicles of type 2c and type 3 cells is slightly iodinated, (3) although it is difficult to determine whether the dense granules and bodies, which might be lysosomes, are secretory substances or reabsorbed materials, the possibility of the occurrence of reabsorption and hydrolysis of the thyroglobulin in the type 2c and type 3 cells should be considered, and (4) reabsorption of the thyroglobulin from the endostylar lumen by some type 5 cells should be also considered.  相似文献   

10.
Yagisawa F  Nishida K  Kuroiwa H  Nagata T  Kuroiwa T 《Planta》2007,226(4):1017-1029
Cyanidioschyzon merolae is considered as a suitable model system for studies of organelle differentiation, proliferation and partitioning. Here, we have identified and characterized vacuoles in this organism and examined the partitioning of vacuoles using fluorescence and electron microscopy. Vacuoles were stained with the fluorescent aminopeptidase substrate 7-amino-4-chloromethylcoumarin l-arginine amide, acidotrophic dyes quinacrine and LysoTracker, and 4′,6-diamidino-2-phenyl indole, which, at a high concentration, stains polyphosphate. Vacuoles have been shown to be approximately 500 nm in diameter with a mean of around five per interphase cell. The vacuolar H+-ATPase inhibitor concanamycin A blocked the accumulation of quinacrine in the vacuoles, suggesting the presence of the enzyme on these membranes. Electron microscopy revealed that the vacuoles were single membrane-bound organelles with an electron-dense substance, often containing a thick layer surrounding the membrane. Immunoelectron microscopy using an anti-vacuolar-H+-pyrophosphatase antibody revealed the presence of the enzyme on these membranes. In interphase cells, vacuoles were distributed in the cytoplasm, while in mitotic cells they were localized adjacent to the mitochondria. Filamentous structures were observed between vacuoles and mitochondria. Vacuoles were distributed almost evenly to daughter cells and redistributed in the cytoplasm after cytokinesis. The change in localization of vacuoles also happened in microtubule-disrupted cells. Since no actin protein or filaments have been detected in C. merolae, this result suggests an intrinsic mechanism for the movement of vacuoles that differs from commonly known mechanisms mediated by microtubules and actin filaments.  相似文献   

11.
Fine structural studies of the epididymis of mature mongrel dogs and of Sprague-Dawley rats were undertaken in conjunction with research dealing with the effects of vasectomy upon this organ. This paper reports the observation of crystalloid and lamellar inclusions present in these species following fixation of the epididymis in 5 % glutaraldehyde, post-fixation in osmium, and routine processing for electron microscopy. In the dog, crystalloid inclusions were observed within the cauda epididymidis of unoperated and vasectomized animals. They were found within the apical cytoplasm of principal cells in association with the Golgi apparatus and endoplasmic reticulum, and in some instances, in close proximity to the nucleus. These crystalloids exhibited a 12 nm periodicity and often measured over 3 μm in length. In the rat, two types of inclusions were found, one within mitochondria of clear cells from unoperated animals and another within membrane-bound bodies of principal cells from the caput epididymidis of unoperated and vasectomized animals. The mitochondria which contained inclusions were basally located and were observed in stacks of up to eight elongate mitochondria each. The mitochondrial inclusions exhibited a complex lamellar structure with an approximate periodicity of 36 nm. In contrast, the crystalloid inclusions found within principal cells were sequestered within supranuclear cytoplasmic bodies which increased in number with age. Such crystalloids exhibited a linear periodicity of 11–13.5 nm, but the precise lattice structure remains to be determined. Although certain aspects of the morphology of these bodies suggests a relationship to microbodies, we have been unable to demonstrate catalase activity within them. At present, neither the origin of crystalloid structures described, nor their relationship to epididymal physiology is clear.  相似文献   

12.
Summary Logarithmic cultures of Saccharomyces cerevisiae strains LBG H 1022, FL-100, X 2180 1A and 1B were studied together with the mutants pep4-3, sec18-1 and sec7-1. The necessary ultrastructural observations showed that, as a rule, juvenile vacuoles were formed de novo from perinuclear endoplasmic reticulum cisternae (ER) packed and inflated with electron-dense (polyanionic) matrix material. This process was disturbed solely in the sec18-1 mutant ander non-permissive conditions. The vacuolar marker enzymes adenosine triphosphatase (ATPase) and alkaline phosphohydrolase (ALPase) were assayed by the ultracytochemical cerium precipitation technique. The neutral ATPase was active in vacuolar membranes and in the previously shown (coated) microglobules nearby. ALPase activity was detected in microglobules inside juvenile vacuoles, inside nucleus and in the cytoplasm as well as in the membrane vesicles and in the periplasm. The sites of vacuolar protease carboxypeptidase Y (CPY) activity were assayed using N-CBZ-l-tyrosine-4-methoxy-2-naphthylamide (CBZ-Tyr-MNA) as substrate and sites of the aminopeptidase M activity using Leu-MNA as substrate. Hexazotized p-rosaniline served as a coupler for the primary reaction product of both the above proteases (MNA) and the resulting azo-dye was osmicated during postfixation. The CPY reaction product was found in both polar layers of vacuolar membranes (homologous to ER) and in ER membranes enclosing condensed lipoprotein bodies which were taken up by the vacuoles of late logarithmic yeast. Both before and after the uptake into the vacuoles the bodies contained the CPY reaction product in concentric layers or in cavities. Microglobules with CPY activity were also observed. Aminopeptidase was localized in microglobules inside the juvenile vacuoles. These findings combined with the previous cytochemical localizations of polyphosphates and X-prolyl-dipeptidyl (amino)peptidase in S. cerevisiae suggest the following cytologic mechanism for the biosynthetic protein transport: coated microglobules convey metabolites and enzymes either to the cell surface for secretion or enter the vacuoles in all phases of the cell cycle. The membrane vesicles represent an alternative secretory mechanism present in yeast cells only during budding. The homology of the ER with the vacuolar membranes and with the surface membranes of the lipoprotein condensates (bodies) indicates a cotranslational entry of the CPY into these membranes: The secondary transfer of a portion of CPY into vacuoles is probably mediated by the lipoprotein uptake process.  相似文献   

13.
The inner bark tissues of three temperate hardwoods contain specific proteins which undergo seasonal fluctuations. Increases in particular proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, occur within the bark of several Acer, Populus and Salix spp. during late summer and early autumn. These proteins are abundant in the bark throughout the winter and their levels decline the following spring. Light and electron microscopy showed that the parenchyma cells of the inner bark are packed with spherical organelles throughout the overwintering period. These organelles are rich in protein and analogous to protein bodies found in cells of mature seeds. The protein bodies of the parenchyma cells are replaced by large central vacuoles during spring and summer, presumably as a result of the mobilization of the storage protein and fusion of the protein bodies. The high levels of specific proteins in inner bark tissues and the presence of protein bodies within the parenchyma cells indicate that the living cells of the bark act as a nitrogen reserve in overwintering temperate hardwoods.Abbreviations FW fresh weight - kDa kilodalton - M r relative molecular mass  相似文献   

14.
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulselabeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.  相似文献   

15.
Anatomical and submicroscopical changes in the cotyledons and radicles of Bidens cernua L. have been studied at five developmental stages. In the subcellular structure, these two plant organs are relatively similar but each developmental stage is characterized by a distinct fine structure. Protein bodies, which occupy the bulk of the cell in dormant embryos, develop as filling products of vacuoles. Ribosomes are seen abundantly at this stage, both in the nucleus and the plasma strands. Small vesicles which are the initials of globoids can be detected in the vacuoles even of rather young cells. They later associate at the periphery of protein masses secreted in the vacuoles. Many light globoids are seen in the protein bodies of mature cells. Some amyloplasts are present in the early developmental stages but not in the dormant cells. The endoplasmic reticulum becomes filled with osmiophilic storage fat, and later many spherosomes are seen between the protein bodies. Some osmiophilic material is also found in the intercellular spaces.  相似文献   

16.
Protein bodies in embryonic axes of soybean seeds have inclusion structures containing phytin globoids. Biogenesis of the protein bodies during seed development was examined by transmission electron microscopy. Protein bodies in embryonic axes originated from central vacuoles. The central vacuole in embryonic axes subdivided into smaller vacuoles with internal membranous structure. Then the subdivided vacuoles were directly associated with rough endoplasmic reticulum (rER), and were filled with proteinaceous matrix from the peripheral region. The increase of matrix was simultaneous with accumulation of β-conglycinin estimated by SDS-polyacrylamide gel electrophoresis. Glycinin-rich granules that had been found in developing cotyledons were not observed in embryonic axes. After proteinaceous matrix filled the protein bodies, electron-transparent regions presumably surrounded by a single membrane appeared in the matrix. Phytin globoids were constructed in this internal structures of protein bodies as the final step of protein body formation.  相似文献   

17.
Segmenting mouse ova, grafted beneath the kidney capsule of syngenic adult recipients, result in a growth of trophoblast, which changes from small, actively-dividing cells into giant trophoblast cells which degenerate 15 days after grafting. Similar giant cells are found in normal mouse placentas. Radioautography with 3H-thymidine, uridine, and leucine revealed cessation of DNA synthesis after day 8, with decline in RNA synthesis from day 10, and continued protein synthesis through day 15. Treatment with Colcemid reduced the graft size but failed to suppress giant cell formation. Treatment on days 4–7 of grafting with 5-fluorodeoxyuridine (FUdR), cyclohexamide, or actinomycin D resulted in giant cell suppression with the maintenance of healthy-appearing small trophoblast cells. These results confirm the early withdrawal of trophoblast grafts from the mitotic pool and the non-mitotic increase of trophoblast DNA, and demonstrate the apparent need for RNA and protein synthesis to support the development of trophoblast giant cells.  相似文献   

18.
We have examined the properties and subcellular localization of phytohemagglutinin (PHA), the major lectin of the common bean (Phaseolus vulgaris.), in the axis cells of nearly mature and imbibed mature seeds. On a protein basis the axis contained about 15% as much PHA as the cotyledons. Localization of PHA was done with an indirect immunolabeling method (rabbit antibodies against PHA, followed by colloidal gold particles coated with goat antibodies against rabbit immunoglobulins) on ultra-thin cryosections which were embedded in plastic on the grids after the immunolabeling procedure. The embedding greatly improved the visualization of the subcellular structures. The small (4 nm) collodial gold particles, localized with the electron microscope, were found exclusively over small vacuoles or protein bodies in all the cell types examined (cortical parenchyma cells, vascular-bundle cells, epidermal cells). The matrix of these vacuoles-protein bodies appears considerably less dense than that of the protein bodies in the cotyledons, but the results confirm that in all parts of the embryo PHA is localized in similar structures.Abbreviations IgG immunoglobulin G - Mr relative molecular weight - PBS phosphate-buffered saline - PHA phytohemagglutinin - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

19.
Summary Unlabeled or3H-labeled UGL, isolated from rabbit lungs, was injected intraluminally into the uteri of ovariectomized low dose progesterone substituted and unsubstituted animals as well as into mated animals on the fifth day of pregnancy. It was offered to the endometrium, in this last case, in competition with endogenously synthesized UGL.3H-labeled IgG served as a control. The animals were killed 24 h after the experiment. Immunohistograms and autoradiograms showed that UGL was taken up by the whole endometrium of the ovariectomized animals but only when progesterone was present. In the preimplantation uterus, uptake was limited to clusters of smaller cells accumulated in the lumen adjacent to the epithelium, whereas IgG remained within the uterine lumen, forming a dense layer on the endometrial surface. A preliminary report of parts of this investigation has been presented at the 15th EDBO International Embryological Conference, June 21–25, 1982, in Strasbourg (France) (Abstract 187)  相似文献   

20.
Ageing cells, especially post-mitotic cells, are known to accumulate pigments, i.e. highly electron-dense material, referred to as ceroid or lipofuscin. This material is formed as a consequence of autophagocytosis and peroxidation of the products undergoing degradation. The present study describes the development of lipofuscin in the ECL cells of the rat stomach. These cells produce and secrete histamine in response to gastrin. They are rich in secretory vesicles, which fuse to form vacuoles in hypergastrinaemic rats. Hypergastrinaemia was induced by continuous infusion of human Leu15-gastrin-17 for 6 days or by daily treatment with omeprazole for 10 weeks. Either treatment caused both vacuoles and lipofuscin bodies to appear in large numbers; the vacuoles disappeared promptly after interruption of the hypergastrinaemia, whereas the lipofuscin bodies remained. Antrectomy-evoked hypogastrinaemia was associated with a reduced number and volume density of lipofuscin bodies. Treatment with α-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, resulted in depletion of ECL-cell histamine and was found to prevent the omeprazole-evoked formation of vacuoles and lipofuscin. The numbers of both vacuoles and lipofuscin bodies were well-correlated with the serum gastrin concentration, suggesting that gastrin stimulates the development not only of vacuoles but also of lipofuscin, perhaps through enhanced autophagocytosis and/or oxidative stress. Thus, lipofuscin bodies may develop from vacuoles, and both vacuoles and lipofuscin bodies may reflect the efforts of overstimulated ECL cells to cope with the excessive formation of secretory products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号