首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the molt, chitin in the old cuticle of Manduca is digested by chitinase taken up from molting fluid, but the chitin in intact (= premolt) cuticle is not accessible to chitinase. As a prerequisite of digestion, old cuticle chitin is rendered competent to serve as chitinase substrate in a reaction attributable to trypsin-like proteolytic activity of molting fluid.  相似文献   

2.
A true chitinase, i.e. a poly-β-1, 4-N-acetylglucosaminidase specific of the hydrolosis of chitin and thus devoid of any lysozymic activity, has been localized in the gastric mucosa extracts and/or in the pancreas extracts of some vertebrate species (frog, lizard and mammals), the diet of which contains chitin. This observation confirms the relation existing between the feeding habits of vertebrates and the ability to synthesize specific chitinolytic enzymes. Furthermore, chitinolytic activity bound to lysozomic activity has been observed in the extracts of other organs such as the spleen of the carp and the kidneys of the dog, the rabbit and the ferret. In these cases, the chitinolytic activity seems to be due to the presence of lysozymes with different degrees of activity on the β-1, 4-N-acetylglucosaminic bounds of chitin.  相似文献   

3.
An enzyme which hydrolyzes the acetamido groups of N-acetylglucosamine residues in chitin was partially purified from Mucor rouxii. The enzyme deacetylates also N-acetylchitooligoses, whereas it is inactive toward bacterial cell wall peptidoglycan, N-acetylated heparin, a polymer of N-acetylgalactosamine, di-N-acetylchitobiose, or N-acetylglucosamine. The enzyme shows a pH optimum of 5.5 and is markedly inhibited by acetate. The occurrence of this enzyme accounts for the formation of chitosan in fungi.  相似文献   

4.
Some properties of chitinase from Phycomyces blakesleeanus   总被引:6,自引:0,他引:6  
R J Cohen 《Life sciences》1974,15(2):289-300
The cytosol of the sporangiophore of Phycomycesblakesleeanus has considerable chitinolytic activity. This activity is strongly dependent on the presence of a dialyzable activator. Maximal activity is achieved at pH 5.5; and ionic strength and Ca++ or Mg++ have little effect. Ungerminated spores do not contribute activity. The possibility is discussed that chitinase might be involved in the growth response system by transiently loosening the rigid framework of chitin at specific and defined points.  相似文献   

5.
6.
The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva–pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.  相似文献   

7.
Summary Decomposition of chitin by Cytophaga johnsonii was investigated. Unlike other chitinolytic bacteria, some strains of C. johnsonii did not liberate chitinase extracellularly; instead the cells of such strains had need for close contact with the chitin particles in order to hydrolyze them. The cell-free extract of one of these strains, viz., C. johnsonii C35 did show presence of chitinase. The remaining strains liberated an extracellular chitinase and a chitobiase. The partially purified chitinase from the culture filtrates of C. johnsonii C31 was most active at pH 6.3–6.5 and at 40°C.Metabolism of N-acetylglucosamine, a product of chitin hydrolysis, by C. johnsonii C35 and C31 was investigated. The nature of some of the products formed and the steps involved in their transformations by the resting cells and the cell-free extracts suggested that N-acetylglucosamine first gets deacetylated to glucosamine before it is further oxidized to glucosaminic acid by these strains. Both strains were also able to dehydrogenate gluconate to 2-ketogluconate, the former being in all probability the product of deamination of glucosaminic acid.  相似文献   

8.
In order to investigate the mechanism of glucose repression of the N-acetylglucosamine metabolic enzymes in Candidaalbicans, an obligatory aerobic yeast, the activities of the following inducible enzymes were assayed: the N-acetylglucosamine uptake, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase. In the presence of glucose or other sugars e.g. succinate and glycerol, synthesis of these enzymes took place at a normal rate, suggesting that the hexose produces no catabolite repression in this organism. On the contrary, strong inhibition by glucose was observed on the activities of N-acetylglucosamine uptake and deaminase in N-acetylglucosamine-grown cells of Saccharomycescerevisiae, a facultative aerobe. From the results, it is concluded that “glucose effect” or catabolite repression is absent in Candidaalbicans, a pathogenic strain of yeast.  相似文献   

9.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

10.
Upon partial reduction of hydrogenase from Chromatium vinosum with ascorbate plus phenazine methosulphate, EPR signals due to Ni(III) and a [3Fe-xS] cluster appear simultaneously and with equal intensities. Since the intact enzyme shows no S = 12 signals, it is concluded that Ni(III) and a [4Fe-4S]3+ cluster interact magnetically in such a way as to prevent the detection of the two paramagnets as individual S = 12 systems. This interaction is thought to be the origin of a signal in which Fe is involved and which is not due to an S = 12 system (Albracht, S.P.J., Albrecht-Ellmer, K.J., Schmedding, D.J.M. and Slater, E.C. (1982) Biochim. Biophys. Acta 681, 330–334). A variable fraction of the enzyme preparation shows signals due to Ni(III) and a [3Fe-xS] cluster with equal intensities without any further treatment. These are thought to be derived from irreversibly inactivated enzyme molecules. The enzyme contains no selenium.  相似文献   

11.
【目的】研究MIG1基因和葡萄糖对扣囊复膜孢酵母细胞形态变化的影响及其机理探究。【方法】扣囊复膜孢酵母在不同浓度葡萄糖的YPD培养基中培养,敲除MIG1基因菌株在常规YPD培养基中培养,研究细胞内葡聚糖酶和几丁质酶活性以及细胞壁β-葡聚糖和几丁质含量与细胞形态变化之间的关系。【结果】培养基中葡萄糖浓度越低,扣囊复膜孢酵母菌丝体越少,单细胞酵母越多,且葡聚糖酶和几丁质酶活性越高,β-葡聚糖和几丁质含量越低;葡萄糖浓度对敲除MIG1基因菌株没有显著影响,葡聚糖酶和几丁质酶活性始终保持在较高水平,β-葡聚糖和几丁质含量也较低,菌体多以单细胞酵母形式存在。【结论】MIG1基因和葡萄糖通过葡萄糖阻遏作用调节葡聚糖酶和几丁质酶活性,进而影响细胞壁的葡聚糖和几丁质含量,最终影响扣囊复膜孢酵母细胞的形态变化。  相似文献   

12.
Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000, pI 4.7 (A1); Mr 69,000, pI 4.5 (A2); Mr 38,000, pI 6.6 (B1); Mr 38,000, pI 5.9 (B2); Mr 39,000, pI 8.5 (C); and Mr 52,000, pI 5.2 (D). Among these chitinases, A1 and A2 had the highest colloidal-chitin-hydrolyzing activities. Chitinase A1 showed a strong affinity to insoluble substrate chitin. Purified chitinase A1 released predominantly chitobiose [(GlcNAc)2] and a trace amount of N-acetylglucosamine (GlcNAc) from colloidal chitin. N-terminal amino acid sequence analysis of chitinases A1 and A2 indicated that chitinase A2 was generated from chitinase A1, presumably by proteolytic removal of a C-terminal portion of chitinase A1. Since chitinase A2 did not have the ability to bind to chitin, the importance of the C-terminal region of chitinase A1 to the strong affinity of chitinase A1 to substrate chitin was suggested. Strong affinity of the chitinase seemed to be required for complete degradation of insoluble substrate chitin. From these results, it was concluded that chitinase A1 is the key enzyme in the chitinase system of this bacterium.  相似文献   

13.
The influence of GABA on the affinity of flunitrazepam (FLU) for benzodiazepine receptor subtypes (type I and II) was studied by measurement of the competitive inhibition of [3H]FLU and [3H]propyl beta-carboline-3-carboxylate ([3H]PCC) binding. When assays were carried out at 0°C using a low concentration (0.040 nM) of [3H]PCC so that the type I receptors were selectively labelled, no significant effect of GABA (10?4 M) on the FLU[3H]PCC competition curve was detected. In contrast, when assays were carried out at 0°C using [3H]FLU or a high concentration of [3H]PCC to achieve [3H]ligand receptor occupancy of both type I and type II receptors, GABA (10?4 M) caused a significant increase in the affinity of FLU as measured by FLU[3H]FLU and FLU[3H]PCC competition experiments. Collectively, these data suggest that the influence of GABA on benzodiazepine receptor binding is mediated, primarily, by the type II receptor. It was also noted that the PCC[3H]FLU competition curve had a Hill coefficient of approximately 1 at 37°C as compared to the results of experiments at 0°C during which a Hill coefficient of approximately 0.7 was calculated.  相似文献   

14.
Induction and repression of a gene for chitinase (chiA) in Streptomyces lividans was investigated using a catechol 2,3-dioxygenase gene (xylE) as the reporter gene. Of various substrates examined, expression of the promoter (PchiA) was observed after a delay when colloidal chitin or small chitin-oligosaccharides were added to the medium. N-acetylglucosamine completely repressed the chiA promoter. The duration of the delay in expression of PchiA differed with the inducer used, with chitobiose inducing the activity most rapidly. The minimum concentration of chitobiose needed for induction was 1 microM. It appears, therefore, that an efficient inducer of the gene for chitinase in S. lividans is chitobiose.  相似文献   

15.
Subcellular localization of [3H]1α,24(R)-dihydroxyvitamin D3 and [3H]1α,24(S)-dihydroxyvitamin D3 in rat intestinal mucosa was investigated in comparison with the [3H]1α-hydroxyvitamin D3. The 24(R) and 24(S) isomers of 1α,24-dihydroxyvitamin D3 were gradually transformed to 1α,24(R)25-trihydroxyvitamin D3 and 1α,24(S)25-trihydroxyvitamin D3, and the plasma concentrations of these metabolites were 10.30 and 1.36 pmol/ml, respectively. The major portions of the administered compounds distributed in the nuclear fraction of the intestinal mucosa remained unchanged, and the amounts of 1α,24(R)-dihydroxyvitamin D3 and 1α,24(S)-dihydroxyvitamin D3 were 4.25 and 0.306 pmol/g intestinal mucosa, respectively. No detectable amount of the metabolites, 1α,24(R)25-trihydroxyvitamin D3 and 1α,24(S)25-trihydroxyvitamin D3 were found in the same nuclear fractions. In the case with the [3H]1α-hydroxyvitamin D3, however, the compound was rapidly metabolized to 1α,25-dihydroxyvitamin D3.The metabolite, 1α,25-dihydroxyvitamin D3, was seen in the nuclear fraction of the intestinal mucosa at a concentration of 2.44 pmol/g intestinal mucosa.  相似文献   

16.
Chitin synthase activity has been demonstrated in crude homogenates of larval integuments from L. cuprina and in similar preparations from Musca domestica and Calliphora erythrocephala. This is the first report of an insect integumental chitin synthase. This activity brings about the incorporation of radioactivity from UDP-N-acetyl-[14C]glucosamine into an ethanol- and alkali-insoluble form. A major part of this labelled product has been characterized as chitin by its insolubility in alkali, resistance to degradation by proteases and its susceptibility to digestion by chitinase and HCl. Most of the radioactivity solubilized during digestion by chitinase co-migrates with N-acetylglucosamine, glucosamine and chitobiose during paper chromatography. Some radioactivity also becomes incorporated into non-chitin products in this system. There is substantial evidence that incorporation is not brought about by whole epidermal cells or by microbial contamination in the homogenates. The extent of incorporation obtained with the homogenates is limited by the presence of degradative enzymes which rapidly break down the substrate (UDP-N-acetylglucosamine). The incorporation was partially inhibited (50-70%) by both polyoxin-D (apparent Ki 0.04 microM) and diflubenzuron (apparent Ki 5-8 microM). This is the first report of a cell-free chitin-synthesizing system derived from insect tissue which is sensitive to inhibition by diflubenzuron.  相似文献   

17.
S J Yu  L C Terriere 《Life sciences》1975,17(4):619-625
The insect growth regulators (IGR) TH 6038 and TH 6040 affect larvae of various species by interfering with cuticle development. In a biochemical study of their effects, larvae of the house fly, Musca domestica L. were reared for 2 days on diets containing 1.7 to 166.7 ppm of these compounds, then assayed for activities of the microsomal oxidases and the enzyme(s) which metabolize β-ecdysone. The activities of these enzymes were compared with the percentage of treated larvae completing pupal-adult ecdysis. The two compounds reduced the activity of the β-ecdysone metabolizing enzyme(s) by as much as 57%, reduced pupal-adult ecdysis by 43% to 100%, and stimulated microsomal oxidase activity 4- to 12-fold. Supplementation of the diet of the treated insects with the Cecropia juvenile hormone, JH I, partially restored pupal-adult ecdysis but supplementation with β-ecdysone had no effect. The mode of action indicated by these results is that the IGRs cause an accumulation of β-ecdysone in the treated larvae. This stimulates the enzyme, chitinase, which degrades chitin in preparation for formation of the new cuticle. The hormone may also cause a JH deficiency and the stimulation of DOPA decarboxylase and phenol oxidase which would further disrupt the normal molting process.  相似文献   

18.
When parsley [2Fe-2S] and C. pasteurianum 2[4Fe-4S] proteins in the normal oxidised state are reduced 1:1 with Cr(II) (15-aneN4) (H2O)22+ the Cr(III) product remains attached to the protein and reduction is by an inner-sphere mechanism. With Chromatium high potential [4Fe-4S] protein and C. pasteurianum rubredoxin the Cr(III) product is not attached to the protein and the mechanism is outer-sphere. Results are discussed in the context of protein crystallographic information. The Cr(III) product is not attached to the Fe2S2 core (extrusion experiments) or to the cysteinyl S-atoms (ESR). Negative patches close to the active site remain possible alternatives.  相似文献   

19.
A bacterial strain secreting potent chitinolytic activity was isolated from shrimp-pond water by enrichment culture using colloidal crab-shell chitin as the major carbon source. The isolated bacterium, designated asAeromonas sp No. 16 exhibited a rod-like morphology with a polar flagellum. Under optimal culture conditions in 500-ml shaker flasks, it produced a chitinolytic activity of 1.4 U ml–1. A slightly higher enzymatic activity of 1.5 U ml–1 was obtained when cultivation was carried out in a 5-liter jar fermentor using a medium containing crystalline chitin as the carbon source. The secretion of the enzyme(s) was stimulated by several organic nitrogenous supplements. Most carbon sources tested (glucose, maltose, N-acetylglucosamine, etc) enhanced cell growth, but they slightly inhibited enzyme secretion. Glucosamine (0.5% w/v) severely inhibited cell growth (16% of the control), but it did not significantly affect enzyme secretion. The production of chitinolytic enzymes was pH sensitive and was enhanced by increasing the concentration of colloidal chitin to 1.5%. The observed chitinolytic activity could be attributed to the presence of -N-acetylglucosaminidase and chitinase. Chitinase was purified by ammonium sulfate fractionation and preparative gel electrophoresis to three major bands on SDS-PAGE. An in-gel enzymatic activity assay indicated that all three bands possessed chitinase activity. Analysis of the enzymatic products indicated that the purified enzyme(s) hydrolyzed colloidal chitin predominantly to N,N-diacetyl-chitobiose and, to a much lesser extent, the mono-, tri, and tetramer of N-acetylglucosamine, suggesting that they are mainly endochitinases.  相似文献   

20.
细菌几丁质酶基因的表达调控   总被引:1,自引:0,他引:1  
Xie CC  Jia HY  Chen YH 《遗传》2011,33(10):1029-1038
几丁质酶可以降解几丁质,广泛存在于各类微生物中。几丁质的降解产物几丁寡糖在医药、食品及农业生防领域有很重要的应用价值及广泛的应用前景。细菌在利用几丁质时,需要先分泌几丁质酶,将几丁质降解成几丁寡糖或单体,再通过特异的转运系统送进细胞而被利用。胞内的几丁质降解产物作为特定的信号分子,可以激活或阻遏相应chi基因的转录,从而影响细菌几丁质酶的合成。在各种调节蛋白及应答元件的参与下,细菌几丁质酶的合成受到精密的控制。文章以链霉菌和大肠杆菌为代表综述了细菌在转运系统和基因表达两个层面上控制几丁质酶合成的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号