首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Methods for immobilizing champagne yeasts, physiological and biochemical characteristics of the immobilized cells, and problems of their utilization in the production of quality champagne wines are reviewed. Studies aimed at the development of efficient biocatalysts for champaignizing wines using bottle fermentation (method champenoise) and tank processing (bulk, or Charmat process), based on the use of immobilized yeast cells, are described. Data on the industrial use of such biocatalysts in countries manufacturing champagne wines are presented. Problems and prospects of further research in this field are discussed.  相似文献   

2.
Fresh, defrosted and delignified brewer's spent grains (BSG) were used as yeast supports for alcoholic fermentation of molasses. Glucose solution (12%) with and without nutrients was used for cell immobilization on fresh BSG, without nutrients for cell immobilization on defrosted and with nutrients for cell immobilization on delignified BSG. Repeated fermentation batches were performed by the immobilized biocatalysts in molasses of 7, 10 and 12 initial Baume density without additional nutrients at 30 and 20 degrees C. Defrosted BSG immobilized biocatalyst was used only for repeated fermentation batches of 7 initial Baume density of molasses without nutrients at 30 and 20 degrees C. After immobilization, the immobilized microorganism population was at 10(9) cells/g support for all immobilized biocatalysts. Fresh BSG immobilized biocatalyst without additional nutrients for yeast immobilization resulted in higher fermentation rates, lower final Baume densities and higher ethanol productivities in molasses fermentation at 7, 10 and 12 initial degrees Be densities than the other above biocatalysts. Adaptation of defrosted BSG immobilized biocatalyst in the molasses fermentation system was observed from batch to batch approaching kinetic parameters reported in fresh BSG immobilized biocatalyst. The results of this study concerning the use of fresh or defrosted BSG as yeast supports could be promising for scale-up operation.  相似文献   

3.
Wine champagnizing, a process involving the use of champagne yeasts immobilized by inclusion into cryogels of polyvinyl alcohol, has been studied. Treatment of yeast cells with the autoregulatory factor d1 was proposed as a means of preventing the cell escape from the carrier matrix. Such a treatment inhibited growth and proliferation processes in yeasts cells, without affecting the activity of fermentation; the resulting champagne had the same organoleptic and chemical characteristics as its counterparts obtained using traditional techniques.  相似文献   

4.
Wine champagnizing, a process involving the use of champagne yeasts immobilized by inclusion into cryogels of polyvinyl alcohol, has been studied. Treatment of yeast cells with the autoregulatory factor d 1 was proposed as a means of preventing the cell release from the carrier matrix. Such a treatment inhibited growth and proliferation processes in yeast cells, without affecting the activity of fermentation; the resulting champagne had the same organoleptic and chemical characteristics as its counterparts obtained using conventional techniques.  相似文献   

5.
Methods for development of bioengineering systems of different types useful in synthesis and transformation of antibiotics are discussed. It was shown that in development of monoenzymatic biocatalysts on the basis of immobilized cells and in preparation of immobilized cultures producing secondary metabolites with enzymological engineering directed action on the cells could be provided which made it possible to establish highly efficient bioengineering systems. Various means for providing the directed action and method for estimation of the carrier-culture interation are proposed. The prospects of using the second generation biocatalysts in improvement of the processes for production of antibiotics are described.  相似文献   

6.
Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.  相似文献   

7.
Until recently it was only practical to use immobilized systems containing single enzymes or whole cells. More complex systems providing cofactor regeneration outside living cells have now been developed; coimmobilization of enzymes, cells and organelles from different organisms promises to improve further the industrial feasibility of immobilized biocatalysts.  相似文献   

8.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and kappa-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe(3)O(4) nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g(-1) saturation magnetization. When the mixture of gellan gel and the Fe(3)O(4) nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe(3)O(4) nanoparticles was 9 mg ml(-1) and the saturation magnetization of magnetically immobilized cells was 11.08 emu g(-1). Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

9.
Dihydroxyacetone (DHA) is of great interest in the fine chemical and pharmaceutical industry; therefore, the discovery of suitable biocatalysts for the efficient production of it is very necessary. In the experiment, Gluconobacter oxydans was immobilized in polyvinyl alcohol (PVA). Various parameters of the immobilized cells were investigated. The results have shown that the optimal conversion conditions by the immobilized cells were at 30 degrees C and pH 6.0. The immobilized cells remained very active over the period of 14 days for storage and only lost 10% of its original activity. Repeated use of immobilized cells for conversion of glycerol to DHA was carried out in a 1.5 L stirred tank reactor, the average conversion rate was about 86%. Despite the high shear stress, bead shape was not affected, even after five consecutive conversion cycles. The regenerated biocatalyst could recover 90% of its initial activity.  相似文献   

10.
In this study we used the yeast Candida guilliermondii FTI 20037 immobilized by entrapment in Ca-alginate beads (2.5-3 mm diameter) for xylitol production from concentrated sugarcane bagasse hemicellulosic hydrolysate in a repeated batch system. The fermentation runs were carried out in 125- and 250-ml Erlenmeyer flasks placed in an orbital shaker at 30 degrees C and 200 rpm during 72 h, keeping constant the proportion between work volume and flask total volume. According to the results, cell viability was substantially high (98%) in all fermentative cycles. The values of parameters xylitol yield and volumetric productivity increased significantly with the reutilization of the immobilized biocatalysts. The highest values of xylitol final concentration (11.05 g/l), yield factor (0.47 g/g) and volumetric productivity (0.22 g/lh) were obtained in 250-ml Erlenmeyer flasks containing 80 ml of medium plus 20 ml of immobilized biocatalysts. The support used in this study (Ca-alginate) presented stability in the experimental conditions used. The results show that the use of immobilized cells is a promising approach for increasing the xylitol production rates.  相似文献   

11.
Grape must fermentation by the combination of immobilized Candida stellata cells and Saccharomyces cerevisiae was carried out in order to enhance the analytical profiles of wine. Batch and continuous pre-treatment of must with immobilized C. stellata cells, followed by an inoculum of S. cerevisiae , enhanced the analytical profiles of fermentates. The metabolic interactions between the two yeast species showed a positive influence on reducing sugars, acetaldehyde and acetoin metabolism. Sequential fermentation was the best combination for improving the analytical profiles of wine but caused a loss of viability and metabolic activity of beads by limiting their successive use. Continuous pre-treatment of must on the beads of C. stellata could be a more interesting modality to improve the quality of wines. This biotechnological process could be profitably used to produce specific and special wines.  相似文献   

12.
Four different proteases (trypsin, chymotrypsin, papain and pepsin) were covalently attached to the surface of a new type of porous zirconia, as well as a conventional porous silica, activated with 3-isothiocyanatopropyltriethoxy silane (NCS-silane). The immobilization efficiency onto the porous zirconia material was evaluated in terms of the amount of enzyme attached to the particles and from the biological activity remaining after the immobilization step. The results were compared with the corresponding experiments with a porous silica of similar surface area/g support material. In addition, the storage stability of the modified zirconia and silica biocatalysts were evaluated. These results indicated that specific immobilized enzyme biocatalysts can be achieved with this new zirconia support material which exhibits different properties to those observed with the more conventional silica-based materials. Moreover, the results with the enzyme-zirconia biocatalysts also indicate different characteristics when compared with data for the same enzymes immobilized under similar buffer conditions to organic support materials as previously described by various other investigators. The advantages of zirconia-based immobilized enzyme biocatalysts in terms of their density and chemical robustness are also described relative to other alternative support materials currently in use.  相似文献   

13.
Resting cells of Rhodococcus equi A4 (free or immobilized in hydrogels) produced monomethyl isophtalate 1c and monomethyl terephtalate 2c from methyl-3-cyanobenzoate 1a and methyl-4-cyanobenzoate 2a, respectively, via the intermediate carboxamides 1b and 2b. The use of dried immobilized biocatalysts resulted in an increased formation of the unwanted cyano acids 1d and 2d. © Rapid Science Ltd. 1998  相似文献   

14.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

15.
The conditions for immobilization of Escherichia coli cells (Soviet strain 85) on the natural polysaccharide carrier carrageenan (Soviet-made) were investigated and kinetic regularities of the aspartase reaction catalysed by immobilized in carrageenan cells of E. coli 85 were established. The conditions for retaining a high aspartase activity and stability of biocatalysts based on the E. coli 85 cells immobilized in PAAG and carrageenan were determined using full-loaded tanks for continuous synthesis of L-aspartic acid. The time-stable aspartase activity of the biocatalyst can be increased by treating the beads of the catalyst with bifunctional reagents (hexamethylenediamine, glutaraldehyde), the most active catalyst for the biotechnological synthesis of L-aspartic acid being obtained when carrageenan is used.  相似文献   

16.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   

17.
Summary A method is described for the on-line observation of immobilized, growing microorganisms in a microreactor mounted on a light microscope to determine several physiological parameters such as cell size and colony size, growth rates, spatial and temporal distribution of cells which are entrapped within transparent gels. The results can be used for modelling growth and diffusion behaviour in biocatalysts to optimize environmental and industrial applications of immobilized cells.  相似文献   

18.
Algae are a largely untapped source of potentially useful biotransformations. Where algal immobilization is appropriate in exploiting this potential, methods fall into two categories: active entrapment and invasive adsorption, the choice of technique partly dependent on algal morphology. Current research on the use of immobilized algae is following a number of lines: as biocatalysts performing biotransformations and de novo biosyntheses, in energy production, for providing oxygen or NADPH2 for coimmobilized biocatalysts, for the bioaccumulation of wastes, and for inclusion into biosensors.  相似文献   

19.
Summary Cells ofThermoanaerobium brockii were immobilized by entrapment methods as easy-to-handle biocatalyst for stereoselective reductions of oxo-acid esters. Different matrix materials were tested: agarose, k-carrageenan, alginate, polyacrylamide and polyurethanes. The two latter matrices allowed useful lifetimes of the immobilized biocatalysts of more than 2 months at thermophilic operation temperatures (around 65°C). Permeabilization of cells did not improve the catalytic activity. Immobilization of the cells did not enhance the thermostability. Only after a considerable period of operation could the immobilized biocatalysts be fed with medium lacking the complex substrates yeast extract and tryptone. Compared with freely suspended cells, reaction rates were lower. The immobilized system proved to be a relatively stable easy-to-handle biocatalyst, however, the freely suspended cells were superior with respect to flexibility of application and reaction velocity.  相似文献   

20.
Aims:  The yeast strain Tetrapisispora phaffii DBVPG 6706 (formerly Kluyveromyces phaffii ) secretes a killer toxin (Kpkt) that has antimicrobial activity against apiculate yeasts. The aim of this study was to evaluate the killer activity of Kpkt towards Hanseniaspora uvarum under winemaking conditions.
Methods and Results:  The zymocidial activity of Kpkt on H. uvarum was assayed in microfermentation trials inoculated with free and immobilized T. phaffii cells. The microbial evolution and fermentation profiles of the wines were evaluated to determine the effects of Kpkt on apiculate yeasts, in comparison with SO2. The results indicate that the fungicidal activity of Kpkt against H. uvarum is stable for at least 14 days in wine, and the zymocin can control the proliferation of apiculate yeasts. The analytical composition of wines with the inoculum of T. phaffii immobilized cells did not differ from the wines with SO2. In contrast to wines without this control of apiculate yeasts, an increase in ethyl acetate was seen.
Conclusions:  Tetrapisispora phaffii is an excellent candidate for the biological control of undesired proliferation of apiculate yeasts during the first steps of fermentation.
Significance and Impact of the Study:  Tetrapisispora phaffii cells in an immobilized form can be used as a biocontrol agent to reduce the need for SO2 addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号