首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We demonstrate that the C-terminal truncation of hIK1 results in a loss of functional channels. This could be caused by either (i) a failure of the channel to traffic to the plasma membrane or (ii) the expression of non-functional channels. To delineate among these possibilities, a hemagglutinin epitope was inserted into the extracellular loop between transmembrane domains S3 and S4. Surface expression and channel function were measured by immunofluorescence, cell surface immunoprecipitation, and whole-cell patch clamp techniques. Although deletion of the last 14 amino acids of hIK1 (L414STOP) had no effect on plasma membrane expression and function, deletion of the last 26 amino acids (K402STOP) resulted in a complete loss of membrane expression. Mutation of the leucine heptad repeat ending at Leu(406) (L399A/L406A) completely abrogated membrane localization. Additional mutations within the heptad repeat (L385A/L392A, L392A/L406A) or of the a positions (I396A/L403A) resulted in a near-complete loss of membrane-localized channel. In contrast, mutating individual leucines did not compromise channel trafficking or function. Both membrane localization and function of L399A/L406A could be partially restored by incubation at 27 degrees C. Co-immunoprecipitation studies demonstrated that leucine zipper mutations do not compromise multimer formation. In contrast, we demonstrated that the leucine zipper region of hIK1 is capable of co-assembly and that this is dependent upon an intact leucine zipper. Finally, this leucine zipper is conserved in another member of the gene family, SK3. However, mutation of the leucine zipper in SK3 had no effect on plasma membrane localization or function. In conclusion, we demonstrate that the C-terminal leucine zipper is critical to facilitate correct folding and plasma membrane trafficking of hIK1, whereas this function is not conserved in other gene family members.  相似文献   

2.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

3.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

4.
We previously demonstrated that the ATP/PKA-dependent activation of the human intermediate conductance, Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal motif. The NH2-terminus of hIK1 contains a multi-basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole-cell patch-clamp. However, cell-surface immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the (15)RKR(17)/AAA mutation we performed inside-out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild-type and mutated channels. However, in contrast to wild-type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four-fold lower channel open probability (P(o)), in the presence of saturating Ca2+ and ATP, compared to wild-type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2-terminus in the second messenger-dependent regulation of hIK1 and, in combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C-terminal association.  相似文献   

5.
This study addressed whether phosphorylation regulates trafficking of yeast membrane proteins that cycle between the trans-Golgi network (TGN) and endosomal system. The TGN membrane proteins A-ALP, a model protein containing the Ste13p cytosolic domain fused to alkaline phosphatase (ALP), and Kex2p were found to be phosphorylated in vivo. Mutation of the S13 residue on the cytosolic domain of A-ALP to Ala was found to block trafficking to the prevacuolar compartment (PVC), whereas a S13D mutation generated to mimic phosphorylation accelerated trafficking into the PVC. The S13 residue was shown by mass spectrometry to be phosphorylated. The rate of endoplasmic reticulum-to-Golgi transport of newly synthesized A(S13A)-ALP was indistinguishable from wild-type, indicating that the lack of transport of A(S13A)-ALP to the PVC was instead due to differences in Golgi/endosomal trafficking. The A(S13A)-ALP protein exhibited a TGN-like localization similar to that of wild-type A-ALP. Similarly, the S13A mutation in endogenous Ste13p did not reduce the extent of or longevity of its localization to the TGN as shown by alpha-factor processing assays. These results indicate that S13 phosphorylation is required for TGN-to-PVC trafficking of A-ALP and imply that phosphorylation of S13 may regulate recognition of A-ALP by vesicular trafficking machinery.  相似文献   

6.
Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling-induced activation of hIK channels was strongly inhibited by cytochalasin D (CD), in concentrations that caused depolymerization of F-actin filaments, indicating a role for the F-actin cytoskeleton in modulation of hIK by changes in cell volume. In conclusion, hIK and rSK3 channels are activated by cell swelling and inhibited by shrinkage. A role for the F-actin cytoskeleton in the swelling-induced activation of hIK channels is suggested.  相似文献   

7.
We previously demonstrated that the endogenously expressed human intermediate conductance, Ca(2+)-activated K(+) channel (hIK1) was inhibited by arachidonic acid (AA) (Devor, D. C., and Frizzell, R. A. (1998) Am. J. Physiol. 274, C138-C148). Here we demonstrate, using the excised, inside-out patch-clamp technique, that hIK1, heterologously expressed in HEK293 cells, is inhibited 82 +/- 2% (n = 16) with 3 microm AA, being half-maximally inhibited (IC(50)) at 1.4 +/- 0.7 microm. In contrast, AA does not inhibit the Ca(2+)-dependent, small conductance K(+) channel, rSK2, another member of the KCNN gene family. Therefore, we utilized chimeric hIK1/rSK2 channels to define the AA binding domain on hIK1 to the S5-Pore-S6 region of the channel. Subsequent site-directed mutagenesis revealed that mutation of Thr(250) to Ser (T250S) resulted in a channel with limited sensitivity to block by AA (8 +/- 2%, n = 8), demonstrating that Thr(250) is a key molecular determinant for the inhibition of hIK1 by AA. Likewise, when Val(275) in S6 was mutated to Ala (V275A) AA inhibited only 43 +/- 11% (n = 9) of current flow. The double mutation T250S/V275A eliminated the AA sensitivity of hIK1. Introducing the complimentary single amino acid substitutions into rSK2 (S359T and A384V) conferred partial AA sensitivity to rSK2, 21 +/- 3% and 31 +/- 3%, respectively. Further, introducing the double mutation S359T/A384V into rSK2 resulted in a 63 +/- 8% (n = 9) inhibition by AA, thereby demonstrating the ability to introduce this inhibitory AA binding site into another member of the KCNN gene family. These results demonstrate that AA interacts with the pore-lining amino acids, Thr(250) and Val(275) in hIK1, conferring inhibition of hIK1 by AA and that AA and clotrimazole share similar, if not identical, molecular sites of interaction.  相似文献   

8.
The role of the NH(2)-terminal leucine zipper and dileucine motifs of hIK1 in the assembly, trafficking, and function of the channel was investigated using cell surface immunoprecipitation, co-immunoprecipitation (Co-IP), immunoblot, and whole-cell patch clamp techniques. Mutation of the NH(2)-terminal leucine zipper at amino acid positions 18 and 25 (L18A/L25A) resulted in a complete loss of steady-state protein expression, cell surface expression, and whole-cell current density. Inhibition of proteasomal degradation with lactacystin restored L18A/L25A protein expression, although this channel was not expressed at the cell surface as assessed by cell surface immunoprecipitation and whole-cell patch clamp. In contrast, inhibitors of lysosomal degradation (leupeptin/pepstatin) and endocytosis (chloroquine) had little effect on L18A/L25A protein expression or localization. Further studies confirmed the rapid degradation of this channel, having a time constant of 19.0 +/- 1.3 min compared with 3.2 +/- 0.8 h for wild type hIK1. Co-expression studies demonstrated that the L18A/L25A channel associates with wild type channel, thereby attenuating its expression at the cell surface. Co-IP studies confirmed this association. However, L18A/L25A channels failed to form homotetrameric channels, as assessed by Co-IP, suggesting the NH(2) terminus plays a role in tetrameric channel assembly. As with the leucine zipper, mutation of the dileucine motif to alanines, L18A/L19A, resulted in a near complete loss in steady-state protein expression with the protein being similarly targeted to the proteasome for degradation. In contrast to our results on the leucine zipper, however, both chloroquine and growing the cells at the permissive temperature of 27 degrees C restored expression of L18A/L19A at the cell surface, suggesting that the defect in the channel trafficking is the result of a subtle folding error. In conclusion, we demonstrate that the NH(2) terminus of hIK1 contains overlapping leucine zipper and dileucine motifs essential for channel assembly and trafficking to the plasma membrane.  相似文献   

9.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

10.
Calmodulin (CaM) regulates gating of several types of ion channels but has not been implicated in channel assembly or trafficking. For the SK4/IK1 K+ channel, CaM bound to the proximal C terminus ("Ct1 " domain) acts as the Ca2+ sensor. We now show that CaM interacting with the C terminus of SK4 also controls channel assembly and surface expression. In transfected cells, removing free CaM by overexpressing the CaM-binding domain, Ct1, redistributed full-length SK4 protein from the plasma membrane to the cytoplasm and decreased whole-cell currents. Making more CaM protein available by overexpressing the CaM gene abrogated the dominant-negative effect of Ct1 and restored both surface expression of SK4 protein and whole-cell currents. The distal C-terminal domain ("Ct2") also plays a role in assembly, but is not CaM-dependent. Co-immunoprecipitation experiments demonstrated that multimerization of SK4 subunits was enhanced by CaM and inhibited by removal of CaM, indicating that CaM regulates trafficking of SK4 by affecting the assembly of channels. Our results support a model in which CaM-dependent association of SK4 monomers at their Ct1 domains regulates channel assembly and surface expression. This appears to represent a novel mechanism for controlling ion channels, and consequently, the cellular functions that depend on them.  相似文献   

11.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

12.
The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.  相似文献   

13.
I(f), encoded by the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel family, is a key player in cardiac and neuronal pacing. Although HCN channels structurally resemble voltage-gated K(+) (Kv) channels, their structure-function correlation is much less clear. Here we probed the functional importance of the HCN1 S3-S4 linker by multiple substitutions of its residues. Neutralizing Glu(235), an acidic S3-S4 linker residue conserved in all hyperpolarization-activated channels, by Ala substitution produced a depolarizing activation shift (V(12) = -65.0 +/- 0.7 versus -70.6 +/- 0.7 mV for wild-type HCN1); the charge-reversed mutation E235R shifted activation even more positively (-56.2 +/- 0.5 mV). Increasing external Mg(2+) mimicked the progressive rightward shifts of E235A and E235R by gradually shifting activation (V(12) = 1 < 3 < 10 < 30 mm); Delta V(12) induced by 30 mm Mg(2+) was significantly attenuated for E235A (+7.9 +/- 1.2 versus +11.3 +/- 0.9 mV for wild-type HCN1) and E235R (+3.3 +/- 1.4 mV) channels, as if surface charges were already shielded. Consistent with an electrostatic role, the energetic changes associated with Delta V(12) resulting from various Glu(235) substitutions (i.e. Asp, Ala, Pro, His, Lys, and Arg) displayed a strong correlation with their charges (Delta Delta G = -2.1 +/- 0.3 kcal/mol/charge; r = 0.94). In contrast, D233E, D233A, D233G, and D233R did not alter activation gating. D233C (in C318S background) was also not externally accessible when probed with methanethiosulfonate ethylammonium (MTSEA). We conclude that the S3-S4 linker residue Glu(235) influences activation gating, probably by acting as a surface charge.  相似文献   

14.
Vasopressin-induced water reabsorption coincides with phosphorylation of aquaporin-2 (AQP2) at S256 (pS256), dephosphorylation at S261, and its translocation to the apical membrane, whereas treatment with the phorbol ester 12-tetradecanoylphorbol-13-acetate (TPA) induces AQP2 ubiquitination at K270, its internalization, and lysosomal degradation. In this study we investigated the relationship between S256 and S261 phosphorylation in AQP2 and its ubiquitination and trafficking in MDCK cells. Forskolin stimulation associated with increased pS256 and decreased pS261 AQP2, indicating that MDCK cells are a good model. After forskolin stimulation, TPA-induced ubiquitination of AQP2 preceded phosphorylation of AQP2 at S261, which in the first instance occurred predominantly on ubiquitinated AQP2. Forskolin-induced changes in pS261 were also observed for AQP2-S256A and AQP2-S256D, which constitutively localize in vesicles and the apical membrane, respectively. Although pS261 varies with forskolin as with wild-type AQP2, AQP2-S256A is not increased in its ubiquitination. Our data reveal that pS261 occurred independently of AQP2 localization and suggest that pS261 follows ubiquitination and endocytosis and may stabilize AQP2 ubiquitination and intracellular localization. The absence of increased ubiquitination of AQP2-S256A indicates that its intracellular location is due to the lack of pS256. Furthermore, AQP2-S261A and AQP2-S261D localized to vesicles, which was due to their increased ubiquitination, because changing K270 into Arg in both mutants resulted in their localization in the apical membrane. Although still increased in its ubiquitination, AQP2-S256D-S261D localized in the apical membrane. AQP2-S256D-K270R-Ub, however, localized to intracellular vesicles. Although our localization of AQP2-S261A/D is different from that of others, these data indicate that constitutive S256 phosphorylation counterbalances S261D-induced ubiquitination and internalization or changes its structure to allow distribution to the apical membrane. The vesicular localization of AQP2-S256D-K270R-Ub, however, indicates that the dominant apical sorting of S256D can again be overruled by constitutive ubiquitination. These data indicate that the membrane localization of AQP2 is determined by the balance of the extents of phosphorylation and ubiquitination.  相似文献   

15.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.  相似文献   

16.
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of +100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K(weak) gating. Instead, a lysine residue in S4, highly conserved among all K(weak) channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward-rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K(in) channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is approximately 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it.  相似文献   

17.
We used a combination of electrophysiological and cell and molecular biological techniques to study the regulation and functional role of the intermediate conductance Ca(2+)-activated K(+) channel, hIK1, in HaCaT keratinocytes. When we incubated cells with the hIK1 opener, 1-ethyl-2-benzimidazolinone (1-EBIO), to investigate the cellular consequences of prolonged channel activity, an unexpected down-regulation of channels occurred within a few hours. The same effect was produced by the hIK1 openers chlorzoxazone and zoxazolamine and was also observed in a different cell line (C6 glioma cells). After 3 days of treatment with 1-EBIO, mRNA levels of hIK1 were substantially diminished and no channel activity was detected. Down-regulation of hIK1 was accompanied by a loss of mitogenic activity and a strong increase in cell size. After withdrawal of 1-EBIO, hIK1 mRNA and channel activity fully recovered and the cells resumed mitogenic activity. Our data present evidence for a novel feedback mechanism of hIK1 expression that appears to result from the paradoxical action of its pharmacological activator during prolonged application. Because the down-regulation of hIK1 bears immediate significance on the biological fate of keratinocytes, 1-EBIO and related compounds might emerge as potent tools to influence the proliferation of various non-excitable cells endowed with IK channels.  相似文献   

18.
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ~12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.  相似文献   

19.
The Ca2+-selective tetrameric Transient Receptor Potential Vanilloid 6 (TRPV6) channel is an inwardly rectifying ion channel. The constitutive current endures Ca2+-induced inactivation as a result of the activation of phospholipase C followed depletion of phosphatidylinositol 4,5-bisphosphate, and calmodulin binding. Replacing a glycine residue within the cytosolic S4-S5 linker of the human TRPV6 protein, glycine 516, which is conserved in all TRP channel proteins, by a serine residue forces the channels into an open conformation thereby enhancing constitutive Ca2+ entry and preventing inactivation. Introduction of a second mutation (T621A) into TRPV6G516S reduces constitutive activity and partially rescues the TRPV6 function. According to the recently revealed crystal structure of the rat TRPV6 the T621 is adjacent to the distal end of the transmembrane segment 6 (S6) within a short linker between S6 and the helix formed by the TRP domain. These results indicate that the S4-S5 linker and the S6-TRP-domain linker are critical constituents of TRPV6 channel gating and that disturbance of their sequences foster constitutive Ca2+ entry.  相似文献   

20.
Cell migration is crucial for wound healing, immune defense, or formation of tumor metastases. In addition to the cytoskeleton, Ca2+ sensitive K+ channels (IK1) are also part of the cellular "migration machinery." We showed that Ca2+ sensitive K+ channels support the retraction of the rear part of migrating MDCK-F cells by inducing a localized shrinkage at this cell pole. So far the molecular nature and in particular the subcellular distribution of these channels in MDCK-F cells is unknown. We compared the effect of IK1 channel blockers and activators on the current of a cloned IK1 channel from MDCK-F cells (cIK1) and the migratory behavior of these cells. Using IK1 channels labeled with a HA-tag or the enhanced green fluorescent protein we studied the subcellular distribution of the canine (cIK1) and the human (hIK1) channel protein in different migrating cells. The functional impact of cIK1 channel activity at the front or rear part of MDCK-F cells was assessed with a local superfusion technique and a detailed morphometric analysis. We show that it is cIK1 whose activity is required for migration of MDCK-F cells. IK1 channels are found in the entire plasma membrane, but they are concentrated at the cell front. This is in part due to membrane ruffling at this cell pole. However, there appears to be only little cIK1 channel activity at the front of MDCK-F cells. In our view this apparent discrepancy can be explained by differential regulation of IK1 channels at the front and rear part of migrating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号