首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new, simple, rapid, and highly sensitive and selective method for the ultrahistochemical detection of calcium is described. The reagent N,N-Naphthaloylhydroxylamine (1,8-C10H6CON(ONa)CO) sodium salt was employed in this study for the demonstration of calcium at the subcellular level in relaxed and contracted muscles (smooth muscle of the stomach, thoracic aorta, and myocardial muscle cells) of the rat (in vitro as well as in vivo) and in the human vascular smooth muscle of the aorta with atherosclerotic calcification. Direct evidence of the presence of calcium in the electron-dense reaction products (calcium N,N-Naphthaloylhydroxylamine) is given by X-ray microanalysis of 1,500-2,000 A thick sections. The significance of distributional differences in the localization of calcium in subcellular structures of relaxed and contracted muscles is discussed in relation to the role of calcium in the control of the muscle activity during the contraction-relaxation cycle.  相似文献   

2.
Tension and X-ray diffraction patterns are not always correlated in the smooth anterior retractor muscle (ABRM) of Mytilus edulis. The muscle produces equatorial intensity profiles of X-ray diffraction patterns corresponding to either a relaxed or a contracted structure. During phasic contractions, comprising a contracted as well a a relaxed phase, the diffracted intensity on the equator at 0.003 A?1 changes within the first 10s after onset of stimulation. The tension reaches a maximum after about the same time. The time dependence of this intensity change during phasic contraction has been measured. It shows that the tension decays within 10s, but the relaxed structure needs 30–40 s to reestablish. There is no difference between the observed intensities from the tonic and phasic contracted states. Inactivated muscles with minimum tension, normally termed relaxed, can have either a “contracted” or a relaxed structure.  相似文献   

3.
In microsomal vesicles isolated from several smooth muscles many polypeptides were phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. In pig stomach and in rabbit and dog aorta components of Mr 22 000 and 11 000 were identified as forms of phospholamban. These polypeptides were, however, not observed in pig aorta. These phospholamban-like polypeptides presented the same electrophoretic mobility in sodium dodecyl sulphate gels as cardiac phospholamban, and the 22 000 Mr form showed a similar reaction to heat treatment in sodium dodecyl sulphate. Antibodies against purified canine cardiac phospholamban cross-reacted with the 22 000 and 11 000 Mr phosphorylatable polypeptides from smooth muscle membranes. Subcellular fractionation of porcine stomach smooth muslce indicated that phospholamban was present in the membranes of the endoplasmic reticulum and not in the plasma membranes. Phospholamban was also phosphorylated by an endogenous calcium—calmodulin-dependent protein kinase and by an endogenous cyclic AMP-dependent kinase. It is concluded that the endoplasmic reticulum of many, but possibly not all, smooth muscles contains phospholamban. However, the physiological role of phospholamban in smooth muscle remains to be established.  相似文献   

4.
Myosin thick filaments have been shown tobe structurally labile in intact smooth muscles. Although the mechanismof thick filament assembly/disassembly for purified myosins in solution has been well described, regulation of thick filament formation inintact muscle is still poorly understood. The present study investigates the effect of resting calcium level on thick filament maintenance in intact airway smooth muscle and on thick filament formation during activation. Cross-sectional density of the thick filaments measured electron microscopically showed that the density increased substantially (144%) when the muscle was activated. Theabundance of filamentous myosins in relaxed muscle was calcium sensitive; in the absence of calcium (with EGTA), the filament densitydeceased by 35%. Length oscillation imposed on the muscle underzero-calcium conditions produced no further reduction in the density.Isometric force and filament density recovered fully after reincubationof the muscle in normal physiological saline. The results suggest thatin airway smooth muscle, filamentous myosins exist in equilibrium withmonomeric myosins; muscle activation favors filament formation, and theresting calcium level is crucial for preservation of the filaments inthe relaxed state.

  相似文献   

5.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

6.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF on various bioassay tissues are compared with those of PGE2 and PGF, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF was ineffective at the concentrations tested.On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF. None of these substances contracted that cat terminal ileum. 6-oxo-PGF was inactive on these tissues at the doses tested.PGI2 was less active than PGE2 or PGF in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

7.
When aortic pressure curves were predicted previously on the basis of a newly developed model of visco-elastic properties of the aorta, it was necessary to use published viscoelastic constants. These were usually obtained from longitudinal strips of blood vessels long removed from the animal, and therefore probably containing deteriorated smooth muscle. The predicted curves had the same form as actual tracings, substantiating the analysis somewhat, but the pressure levels were low. These low levels, if due to inadequate visco-elastic constants, could be attributed to the use of longitudinal rather than circumferential segments as well as to the use of segments with deteriorated muscle. The present analysis uses data collected by the author testing circumferential viscoelastic properties of fourteen different aortic regions in a way suggested by the author's model of an aortic wall. Moreover, the constants were measured on segments containing muscle relaxed by EDTA solutions and on similar segments containing muscle contracted by neosynephrine. These visco-elastic constants were used in the author's nonlinear differential equation of motion of the aortic wallin vivo to predictin vivo pressure curves. The predicted curves were low in any given aortic region if relaxed constants were used, but at normal levels with contracted constants. In fact, pressure curves predicted using constants obtained from aortic segments containing contracted muscle resembled actual tracings in form and pressure levels. Even the observed variations in the form of the systolic pressure curve down the aorta were predicted by this analysis.  相似文献   

8.
Smooth muscle cell energetics of taenia caeci during relaxation, activity and maximal contraction were investigated using 31P-NMR. In relaxed muscle obtained in calcium-free medium, [ATP], [phosphocreatine] and [sugar phosphate] were 4.4 mM, 7.7 mM and 2.8 mM, respectively. There was only a small difference in the energetics of spontaneously active and maximally contracted muscles, but under both conditions substantial changes occurred as compared with relaxed muscles. The internal pH in relaxed muscle was found to be 7.05, which acidified to 6.5 during contraction. The level of sugar phosphates was found to be not a limiting factor in energetics.  相似文献   

9.
ULTRASTRUCTURAL STUDIES ON THE CONTRACTILE MECHANISM OF SMOOTH MUSCLE   总被引:15,自引:9,他引:6       下载免费PDF全文
Fresh taenia coli and chicken gizzard smooth muscle were studied in the contracted and relaxed states. Thick and thin filaments were observed in certain (but not all) cells fixed in contraction. Relaxed smooth muscle contained only thin filaments. Several other morphological differences were observed between contracted and relaxed smooth muscle. The nuclear chromatin is clumped in contraction and evenly dispersed in the relaxed state. The sarcolemma is more highly vesiculated in contraction than in relaxation. In contraction, the sarcoplasm also appears more electron opaque. Over-all morphological differences between cells fixed in isometric and in unloaded contraction were also noticeable. The results suggest a sliding filament mechanism of smooth muscle contraction; however, in smooth muscle, unlike striated muscle, the thick filaments appear to be in a highly labile condition in the contractile process. The relation between contraction and a possible change in pH is also discussed.  相似文献   

10.
The effects of PGI2 and two analogs Iloprost and ZK 96480 were examined on isolated human pulmonary muscle preparations. High concentrations of these agents reduced the basal tone in all types of preparations. In addition, they relaxed tissues which had been maximally contracted with histamine (50 μM). PGI2 was more potent on pulmonary arterial muscle preparations (pD2 value : 6.33, n = 3) than on bronchial muscles. The relaxations induced by PGI2 in bronchial preparations were quite variable, that is, some tissues relaxed while others did not. The analogs also relaxed arterial preparations and the pD2 values were approximately the same (Iloprost : 7.42, n = 4 and ZK 96480 : 7.48, n = 4). The isolated human pulmonary vascular preparations were approximately 10-fold more sensitive to the analogs than bronchial muscle preparations. In bronchial tissues we noted that the PGI2 relaxant effect was spontaneously reversed with time, an activity not observed with both analogs. A pretreatment of the bronchial tissues with indomethacin (1.7 μM) did not reduce the variations observed with PGI2 nor modify the transient relaxation observed with this agent. These data demonstrate that vascular tissues from the human lung are considerably more sensitive to these relaxant agonists than bronchial preparations.  相似文献   

11.
Calcium is a very important regulator of many physiological processes in vascular tissues. Most endothelial and smooth muscle functions highly depend on changes in intracellular calcium ([Ca2+]i) and nitric oxide (NO). In order to understand how [Ca2+]i, NO and downstream molecules are handled by a blood vessel in response to vasoconstrictors and vasodilators, we developed a novel technique that applies calcium-labeling (or NO-labeling) dyes with two photon microscopy to measure calcium handling (or NO production) in isolated blood vessels. Described here is a detailed step-by-step procedure that demonstrates how to isolate an aorta from a rat, label calcium or NO within the endothelial or smooth muscle cells, and image calcium transients (or NO production) using a two photon microscope following physiological or pharmacological stimuli. The benefits of using the method are multi-fold: 1) it is possible to simultaneously measure calcium transients in both endothelial cells and smooth muscle cells in response to different stimuli; 2) it allows one to image endothelial cells and smooth muscle cells in their native setting; 3) this method is very sensitive to intracellular calcium or NO changes and generates high resolution images for precise measurements; and 4) described approach can be applied to the measurement of other molecules, such as reactive oxygen species. In summary, application of two photon laser emission microscopy to monitor calcium transients and NO production in the endothelial and smooth muscle cells of an isolated blood vessel has provided high quality quantitative data and promoted our understanding of the mechanisms regulating vascular function.  相似文献   

12.
Effects of extracellular calcium on canine tracheal smooth muscle   总被引:1,自引:0,他引:1  
Strips of canine tracheal smooth muscle were studied in vitro to determine the effects of changes in the extracellular calcium (Cao) concentration on tonic contractions induced by acetylcholine and 5-hydroxytryptamine. Strips were contracted with graded concentrations of the above agents in 2.4 mM Ca, after which CaCl2 was administered to achieve final concentrations of 5.0, 10.0, and 20.0 mM. Increases in Cao to 5 mM or above caused significant relaxation of muscles contracted with 5-hydroxytryptamine but did not significantly relax muscles contracted with acetylcholine. Increases in Cao also caused significant relaxation of muscles contracted with low concentrations of K+ (20 or 30 mM). However, in 60 or 120 mM K+, increases in Cao resulted predominantly in muscle contraction. Inhibition of the Na+-K+-ATPase by ouabain (10(-5) M) or K+ depletion reversed the effects of Cao from relaxation to contraction in tissues contracted with 5-hydroxytryptamine. Increases in Cao also caused contraction rather than relaxation in the presence of verapamil (10(-6) M). We conclude that calcium has both excitatory and inhibitory effects on the contractile responses of canine tracheal smooth muscle. The inhibitory effects of Ca2+ appear to be linked to the activity of the membrane Na+-K+-ATPase.  相似文献   

13.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF1alpha on various bioassay tissues are compared with those of PGE2 and PGF2alpha, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF1alpha was ineffective at the concentrations tested. On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF2alpha. None of these substances contracted the cat terminal ileum. 6-oxo-PGF1alpha was inactive on these tissues at the doses tested. PGI2 was less active than PGE2 or PGF2alpha in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF1alpha was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

14.
Summary Correlated physiological and electron-microscopic studies were made on the source of calcium activating the contractile system (activator calcium) in dog coronary artery smooth muscle fibers. The magnitude of contracture tension induced by 100 mM K+ was dependent on external Ca2+ concentration and reduced or eliminated by factors known to reduce the Ca2+ spike or ca2+ influx. Little or no mechanical response was elicited by treatments known to cause release of intracellularly stored calcium. These results indicated that the contractile system is mainly activated by the inward movement of extracellular calcium. In accordance with the physiological experiments, electron-opaque pyroantimonate precipitate containing calcium was found in the lumina of caveolae, but not in any intracellular structures close to the plasma membrane, when the relaxed fibers were fixed in a 1% osmium tetroxide solution containing 2% potassium pyroantimonate. If the contracted fibers were fixed in the same solution, the pyroantimonate precipitate was diffusely distributed in the myoplasm in the form of numerous particles, while the precipitate in the caveolar lumina was scarcely seen. These findings are discussed in connection with the regulation of intracellular Ca2+ concentration in dog coronary artery smooth muscle.  相似文献   

15.
The effects of a synthetic form of Atrial Natriuretic Factor (ANF) on spontaneously hypertensive rat aortic smooth muscle were investigated using either an alpha-adrenoceptive agonist (phenylephrine) or an agent which partially depolarized the plasma membrane (20mM KCl) as a contractile agent. The relaxant response was studied under conditions resembling normal physiological calcium ion levels (1.5mM) as well as over a range of calcium ion concentrations (0.1-2.5mM). The results demonstrate a hyporesponsiveness of hypertensive aorta to vasorelaxation induced by synthetic ANF, which is more apparent when the tissue is contracted with KCl. The results also suggest that ANF, which has been shown previously to inhibit intracellular and receptor operated calcium channel mobilization only, may additionally work through a mechanism which is related to the voltage induced calcium flux across the membrane, which also is inhibited less in hypertensive smooth muscle.  相似文献   

16.
The mechanisms by which nitric oxide (NO) relaxes smooth muscles are unclear. The NO donor sodium nitroprusside (SNP) has been reported to increase the Ca2+ release frequency (Ca2+ sparks) through ryanodine receptors (RyRs) and activate spontaneous transient outward currents (STOCs), resulting in smooth muscle relaxation. Our findings that caffeine relaxes and hyperpolarizes murine gastric fundus smooth muscles and increases phospholamban (PLB) phosphorylation by Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) suggest that PLB phosphorylation by CaM kinase II participates in smooth muscle relaxation by increasing sarcoplasmic reticulum (SR) Ca2+ uptake and the frequencies of SR Ca2+ release events and STOCs. Thus, in the present study, we investigated the roles of CaM kinase II and PLB in SNP-induced relaxation of murine gastric fundus smooth muscles. SNP hyperpolarized and relaxed gastric fundus circular smooth muscles and activated CaM kinase II. SNP-induced CaM kinase II activation was prevented by KN-93. Ryanodine, tetracaine, 2-aminoethoxydiphenylborate, and cyclopiazonic acid inhibited SNP-induced fundus smooth muscle relaxation and CaM kinase II activation. The Ca2+-activated K+ channel blockers iberiotoxin and apamin inhibited SNP-induced hyperpolarization and relaxation. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one inhibited SNP-induced relaxation and CaM kinase II activation. The membrane-permeable cGMP analog 8-bromo-cGMP relaxed gastric fundus smooth muscles and activated CaM kinase II. SNP increased phosphorylation of PLB at Ser16 and Thr17. Thr17 phosphorylation of PLB was inhibited by cyclopiazonic acid and KN-93. Ser16 and Thr17 phosphorylation of PLB was sensitive to 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one. These results demonstrate a novel pathway linking the NO-soluble guanylyl cyclase-cGMP pathway, SR Ca2+ release, PLB, and CaM kinase II to relaxation in gastric fundus smooth muscles. calcium signaling; nitric oxide; sodium nitroprusside; calmodulin  相似文献   

17.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   

18.
AimsN-acetylcysteine (NAC) has a protective effect against vascular dysfunction by decreasing the level of reactive oxygen species (ROS) in experimental and human hypertension. This study was designed to examine whether NAC would relax vascular rings in vitro via nitric oxide–cyclic guanosine monophosphate (NO–cGMP) pathway, extracellular Ca2+ and/or K+ channels.Main methodsRat aortic arteries were mounted in an organ bath, contracted with 0.1, 0.5 or 1 µmol/L phenylephrine to plateau, and the vasodilatory effect of NAC was examined in the absence or presence of ROS scavengers, inhibitors of NO–cGMP pathway or K+ channels. Vascular smooth muscle cells (VSMCs) were loaded with a calcium sensitive fluorescent dye fluo-3 AM, and [Ca2+]i was determined with laser-scanning confocal microscopy.Key findingsNAC (0.1–4 mmol/L) dose-dependently relaxed rat aorta pre-contracted with phenylephrine. Endothelium removal, endothelial nitric oxide synthase inhibitor Nω-Nitro-l-arginine (L-NNA) (100 µmol/L) or soluble guanylyl cyclase (sGC) inhibitor (ODQ) (10 µmol/L) did not affect NAC-induced vasodilation. In contrast, NAC-induced vasodilation was blunted after extracellular calcium was removed and calcium imaging showed that 4 mmol/L NAC quickly decreased [Ca2+]i in fluo-3 AM loaded VSMCs. NAC-induced vasodilation was significantly reduced in the presence of voltage-gated K+ channels (Kv) inhibitor 4-aminopyridine (4-AP).SignificanceThe vasodilatory effect of NAC may be explained at least partly by activation of voltage-gated K+ channels.  相似文献   

19.
Several vasodilator compounds (e.g. acetylcholine) relax isolated arteries by a mechanism dependent on an intact endotheliu. The inhibitors of phospholipase A2, mepacrine and p-bromophenacylbromide, reversed the acetylcholine-induced relaxations of rabbit aortic strips. We therefore tested the effect of melittin, a compound which stimulates phospholipase activity. Melittin induced concentration-dependent rapid relaxations of strips of rabbit aorta, preconstricted with noradrenaline, if the endothelium was intact. Strips with noradrenaline, if the endothelium aorta, preconstricted with removed endothelium were not relaxed but rather slightly contracted by the compound. Similar to acetylcholine-induced relaxations melittin relaxations could be completely prevented by nordihydroguaiaretic acid, an inhibitor of lipoxygenases, but not by even high concentrations of indomethacin, an inhibitor of cyclooxygenase. Also the dual inhibitors of cyclooxygenase and lipoxygenases 5,8,11,14-eicosatetraynoic acid (ETYA) and 3-amino-1-(3-trifluoromethylphenly)-2-pyrazoline (BW 755C) inhibited relaxations induced by both melittin and acetylcholine.We therefore conclude that melittin induces the release and/or formation of a substance (an eicosanoid?) by endothelial cells which in turn relaxes the smooth muscle of the blood vessel. This compound is probably a lipoxygenase product of arachidonic acid. The mechanism of relaxation by melittin resembles that induced by acetylcholine.  相似文献   

20.
Increased intracellular calcium concentration ([Ca2+]i) is required for smooth muscle contraction. In tracheal and other tonic smooth muscles, contraction and elevated [Ca2+]i are maintained as long as an agonist is present. To evaluate the physiological role of steady-state increases in Ca2+ on tension maintenance, [Ca2+]i was elevated using ionomycin, a Ca2+ ionophore or charybdotoxin, a large-conductance calcium-activated potassium channel (KCa) blocker prior to or during exposure of tracheal smooth muscle strips to Ach (10–9 to 10–4 M). Ionomycin (5 µM) in resting muscles induced increases in [Ca2+]i to 500±230 nM and small increases in force of 2.6±2.3 N/cm2. This tension is only 10% of the maximal tension induced by ACh. Charybdotoxin had no effect on [Ca2+]i or tension in resting muscle. After pretreatment of muscle with ionomycin, the concentration-response relationship for ACh-induced changes in tension shifted to the left (EC50=0.07±0.05 µM ionomycin; 0.17±0.07 µM, control, p<0.05). When applied to the muscles during steady-state responses to submaximal concentrations of ACh, both ionomycin and charybdotoxin induced further increases in tension. The same magnitude increase in tension occurs after ionomycin and charybdotoxin treatment, even though the increase in [Ca2+]i induced by charybdotoxin is much smaller than that induced by ionomycin. We conclude that the resting muscle is much less sensitive to elevation of [Ca2+]i when compared to muscles stimulated with ACh. Steady-state [Ca2+]i limits tension development induced by submaximal concentrations of ACh. The activity of KCa moderates the response of the muscle to ACh at concentrations less than 1 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号