首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Despite their importance for rhizosphere functioning, rhizobacterial Pseudomonas spp. have been mainly studied in a cultivation-based manner. In this study a cultivation-independent method was used to determine to what extent the factors plant species, sampling site and year-to-year variation influence Pseudomonas community structure in bulk soil and in the rhizosphere of two Verticillium dahliae host plants, oilseed rape and strawberry. Community DNA was extracted from bulk and rhizosphere soil samples of flowering plants collected at three different sites in Germany in two consecutive years. Pseudomonas community structure and diversity were assessed using a polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) system to fingerprint Pseudomonas-specific 16S rRNA gene fragments amplified from community DNA. Dominant and differentiating DGGE bands were excised from the gels, cloned and sequenced. The factors sampling site, plant species and year-to-year variation were shown to significantly influence the community structure of Pseudomonas in rhizosphere soils. The composition of Pseudomonas 16S rRNA gene fragments in the rhizosphere differed from that in the adjacent bulk soil and the rhizosphere effect tended to be plant-specific. The clone sequences of most dominant bands analysed belonged to the Pseudomonas fluorescens lineage and showed closest similarity to culturable Pseudomonas known for displaying antifungal properties. This report provides a better understanding of how different factors drive Pseudomonas community structure and diversity in bulk and rhizosphere soils.  相似文献   

2.
Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4- diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4- DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.  相似文献   

3.
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.  相似文献   

4.
Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the biosynthesis of 2,4-DAPG, were isolated from the rhizosphere of wheat grown in soils from wheat-growing regions of the United States and The Netherlands. To assess the genotypic and phenotypic diversity present in this collection, 138 isolates were compared to 4 previously described 2, 4-DAPG producers. Thirteen distinct genotypes, one of which represented over 30% of the isolates, were differentiated by whole-cell BOX-PCR. Representatives of this group were isolated from eight different soils taken from four different geographic locations. ERIC-PCR gave similar results overall, differentiating 15 distinct genotypes among all of the isolates. In most cases, a single genotype predominated among isolates obtained from each soil. Thirty isolates, representing all of the distinct genotypes and geographic locations, were further characterized. Restriction analysis of amplified 16S rRNA gene sequences revealed only three distinct phylogenetic groups, one of which accounted for 87% of the isolates. Phenotypic analyses based on carbon source utilization profiles revealed that all of the strains utilized 49 substrates and were unable to grow on 12 others. Individually, strains could utilize about two-thirds of the 95 substrates present in Biolog SF-N plates. Multivariate analyses of utilization profiles revealed phenotypic groupings consistent with those defined by the genotypic analyses.  相似文献   

5.
We assessed the effects of phytoextraction on the dynamics of Pseudomonas spp. and ammonia-oxidizing bacterial populations in a heavy metal (HM) polluted soil. Hybrid poplars were grown in two-compartment root containers with a medium history (> 4 years) of HM pollution for 13 weeks. Bulk and poplar rhizosphere soils were analysed by denaturing gradient gel electrophoresis (DGGE) of Pseudomonas (sensu stricto) 16S rRNA and amoA gene fragments. DGGE patterns revealed that Pseudomonas and amoA-containing populations in the contaminated soils were markedly different from those in the uncontaminated soils. Pseudomonas and amoA profiles appeared to be stable over time in the bulk soils. In contrast, contaminated rhizosphere soils revealed a clear shift of populations with removal of HM becoming similar or at least shifted to the populations of the uncontaminated soils. The effect of phytoextraction was, however, not evident in the bulk samples, which still contained large amounts of HM. Cloning and sequencing of dominant DGGE bands revealed that Pseudomonas were phylogenetically related to the Pseudomonas fluorescens cluster and the amoA sequences to Nitrosospira spp. At the last sampling, major prominent band sequences from contaminated rhizosphere soils were identical to sequences obtained from uncontaminated rhizosphere soils, indicating that the populations were dominated by the same phylotypes. This study suggests that two taxonomically different populations are able to recover after the relief of HM stress by phytoextraction practices, whereas bulk microbial activities still remained depressed.  相似文献   

6.
Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found.  相似文献   

7.
Indigenous populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. that occur naturally in suppressive soils are an enormous resource for improving biological control of plant diseases. Over 300 isolates of 2,4-DAPG-producing fluorescent Pseudomonas spp. were isolated from the rhizosphere of pea plants grown in soils that had undergone pea or wheat monoculture and were suppressive to Fusarium wilt or take-all, respectively. Representatives of seven genotypes, A, D, E, L, O, P, and Q, were isolated from both soils and identified by whole-cell repetitive sequence-based PCR (rep-PCR) with the BOXA1R primer, increasing by three (O, P, and Q) the number of genotypes identified previously among a worldwide collection of 2,4-DAPG producers. Fourteen isolates representing eight different genotypes were tested for their ability to colonize the rhizosphere of pea plants. Population densities of strains belonging to genotypes D and P were significantly greater than the densities of other genotypes and remained above log 6.0 CFU (g of root)(-1) over the entire 15-week experiment. Genetic profiles generated by rep-PCR or restriction fragment length polymorphism analysis of the 2,4-DAPG biosynthetic gene phlD were predictive of the rhizosphere competence of the introduced 2,4-DAPG-producing strains.  相似文献   

8.
Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed.  相似文献   

9.
Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the biosynthesis of 2,4-DAPG, were isolated from the rhizosphere of wheat grown in soils from wheat-growing regions of the United States and The Netherlands. To assess the genotypic and phenotypic diversity present in this collection, 138 isolates were compared to 4 previously described 2,4-DAPG producers. Thirteen distinct genotypes, one of which represented over 30% of the isolates, were differentiated by whole-cell BOX-PCR. Representatives of this group were isolated from eight different soils taken from four different geographic locations. ERIC-PCR gave similar results overall, differentiating 15 distinct genotypes among all of the isolates. In most cases, a single genotype predominated among isolates obtained from each soil. Thirty isolates, representing all of the distinct genotypes and geographic locations, were further characterized. Restriction analysis of amplified 16S rRNA gene sequences revealed only three distinct phylogenetic groups, one of which accounted for 87% of the isolates. Phenotypic analyses based on carbon source utilization profiles revealed that all of the strains utilized 49 substrates and were unable to grow on 12 others. Individually, strains could utilize about two-thirds of the 95 substrates present in Biolog SF-N plates. Multivariate analyses of utilization profiles revealed phenotypic groupings consistent with those defined by the genotypic analyses.  相似文献   

10.
11.
Fluorescent Pseudomonas species are an important group of PGPR that suppress fungal root and seedling disease by production of antifungal metabolites such as 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrolinitrin, siderophores and HCN. The compound 2,4-DAPG is a major determinant in biocontrol of plant pathogens. A 7.2 kbp chromosomal DNA region, carrying DAPG biosynthetic genes (phlA, phlC, phlB, phlD, phIE and phlF). Detecting the ph1 genes make them an ideal marker gene for 2,4-DAPG-producing fluorescent pseudomonad's. In this study we detected ph1A gene (that convert MAPG to 2,4-DAPG) using PCR assay with primers phlA-1r and phlA- f that enabled amplification of phlA sequences from fluorescent pseudomonad's from ARDRA group 1 and 3. We could detect phlA gene in P. fluorescens strains CHAO, Pf-44, Pf-1, Pf-2, Pf-3, Pf-17, Pf-62 and Pf-64, native isolates of Iran. The efficacy of this method for rapid assay characterizing rhizosphere population of 2,4-DAPG producing bacteria from soil of different area of Iran is in progress. We used a collection of 48 fluorescent pseudomonas strains in vitro, with known biological control activity against some soil born phytopathogenic fungi such as, Macrophomina phaseoli, Rhizoctonia solani Vericillium dahlia, Phytophthora nicotiana, Pythium spp. and Fusarium spp. and the potential to produce known secondary metabolites such as protease. Strains Pf-1, Pf-2, Pf-3, Pf-17, Pf-33 and Pf-44 showed the best antifungal activity against all fungi used in this study. Thirty-eight of 48 strains produced protease. The ability to rapidly characterize populations of 2,4-DAPG producers will greatly enhance our understanding of their role in the suppression of root disease.  相似文献   

12.
Bacterial Antagonists to Verticillium dahliae Kleb.   总被引:7,自引:0,他引:7  
Bacteria were isolated from the rhizosphere of Verticillium dahliae hosts and from environments. A total of 1394 bacterial isolates were screened for their ability to inhibit in vitro the growth of the phytopathogenic fungi V. dahliae ; 15% (203 of the isolates) showed antifungal effects. Seventeen isolates were selected and determined for further investigations, seven different species were identified. Several of the bacterial species listed, e.g. Erwinia herbicola, Pseudomonas chlororaphis, Pseudomonas paucimobilis and Xanthomonas maltophilia have not been reported previously as bacterial antagonists of V. dahliae. Bacillus subtilis, Pseudomonas fluorescens and Xanthomonas maltophilia are strong antagonists. We proved that lytic enzymes and siderophores are involved in the inhibition of growth. Ultrastructural and morphological changes were induced in Verticillium dahliae by the antagonistic bacteria.  相似文献   

13.
姜维芳  吴小刚  闫庆  张力群 《微生物学报》2008,48(12):1588-1594
Pseudomonas fluorescens 2P24是分离自麦田的植物病害生物防治菌株,产生抗生素2, 4-二乙酰基间苯三酚(2,4-diacetylphloroglucinol;2,4-DAPG)是其主要防病机制。菌株2P24中小RNA基因rsmZ正调控抗生素2,4-DAPG的产量。【目的】本文研究上游调控因子对RsmZ转录表达的影响,以进一步理解抗生素产生机制。【方法】构建了rsmZ: : lacZ的转录融合结构,将含有该结构的报告载体转入2P24的多个调控基因缺失突变体中,检测相应的缺失基因对rsmZ转录水平的调控作用。【结果】结果表明,反应调控因子GacA对rsmZ基因的转录具有正调控作用,二硫键合成蛋白DsbA对其负调控;双因子调控系统PhoP/PhoQ突变后,rsmZ基因的转录明显滞后。【结论】小RNA基因rsmZ在菌株2P24中受到多个基因的调控,并在信号传递网络中起到重要作用。  相似文献   

14.
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.  相似文献   

15.
Conservation of the response regulator gene gacA in Pseudomonas species   总被引:4,自引:1,他引:3  
The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains isolated from different plant-associated environments. Polymerase chain reaction analysis and Southern hybridization showed that gacA is highly conserved within the genus Pseudomonas: multiple strains of different Pseudomonas species all responded positively to the probe, whereas no response was obtained from 18 other strains representing 14 species that belong to eight different genera of Gram-negative bacteria other than Pseudomonas. Furthermore, from a total of approximately 550 indigenous bacterial isolates obtained from the rhizosphere of wheat, all isolates that hybridized with the gacA probe were classified as Pseudomonas spp. by group-specific primers. Isolates that did not respond with the gacA probe and primers were identified as bacterial genera other than Pseudomonas, including Stenotrophomonas, Cryseomonas and Comamonas spp. These results indicate that gacA can be used as a complementary genetic marker for detection of Pseudomonas spp. in environmental samples. Phylogenetic relationships inferred from the newly sequenced gacA fragments and the sequences of gacA homologues present in the databases, showed six distinct clusters that correspond to the following bacterial families: Pseudomonaceae, Enterobacteriaceae, Alteromonadaceae, Vibrionaceae, Burkholderia and Xanthomonas. Within the Pseudomonadaceae and Enterobacteriaceae, polymorphisms within gacA and its homologues allowed identification of six and five subclusters respectively. Comparison of the gacA gene and GacA protein-based trees with the tree inferred from 16S rDNA sequences yielded a similar overall clustering. These results suggest that gacA and its homologues may provide complementary markers for phylogenetic studies of Pseudomonas spp. and Gram-negative bacteria other than Pseudomonas.  相似文献   

16.
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (C(T)s) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.  相似文献   

17.
In order to isolate and characterize new strawberry-associated bacteria antagonistic to the soil-borne pathogenic fungus Verticillium dahliae Kleb., rhizobacterial populations from two different strawberry species, Greenish Strawberry (Fragaria viridis) and Garden Strawberry (F. x ananassa) obtained after plating onto King's B and glycerol-arginine agar, were screened for in vitro antagonism toward V. dahliae. The proportion of isolates with antifungal activity determined in in vitro assay against V. dahliae was higher for the Garden Strawberry than for the Greenish Strawberry. From 300 isolates, 20 isolates with strong antifungal activity were selected characterized by physiological profiling and molecular fingerprinting methods. Diversity among the isolates was characterized with molecular fingerprints using amplified ribosomal DNA restriction analysis (ARDRA) and the more discriminating BOX-PCR fingerprint method. The physiological profiles were well correlated with molecular fingerprinting pattern analysis. Significant reduction of Verticillium wilt by bacterial dipping bath treatment was shown in the greenhouse and in fields naturally infested by V. dahliae. The relative increase of yield ranged from 117% (Streptomyces albidoflavus S1) to 344% (Pseudomonas fluorescens P10) in greenhouse trials, and 113% (Streptomyces albidoflavus S1) to 247% (Pseudomonas fluorescens P6) in field trials. Evaluation resulted in the selection of three effective biocontrol agents (Pseudomonas fluorescens P6, P10, and Streptomyces diastatochromogenes S9) antagonistic to the Verticillium wilt pathogen.  相似文献   

18.
Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) play a key role in the suppressiveness of some soils to take-all of wheat and other diseases caused by soilborne pathogens. Soils from side-by-side fields on the campus of North Dakota State University, Fargo, USA, which have undergone continuous wheat, continuous flax or crop rotation for over 100 years, were assayed for the presence of 2,4-DAPG producers. Flax and wheat monoculture, but not crop rotation, enriched for 2,4-DAPG producers, and population sizes of log 5.0 CFU g root(-1) or higher were detected in the rhizospheres of wheat and flax grown in the two monoculture soils. The composition of the genotypes enriched by the two crops differed. Four BOX-PCR genotypes (D, F, G, and J) and a new genotype (T) were detected among the 2,4-DAPG producers in the continuous flax soil, with F- and J-genotype isolates dominating (41 and 39% of the total, respectively). In contrast, two genotypes (D and I) were detected in the soil with continuous wheat, with D-genotype isolates comprising 77% of the total. In the crop-rotation soil, populations of 2,4-DAPG producers generally were below the detection limit, and only one genotype (J) was detected. Under growth-chamber and field conditions, D and I genotypes (enriched by wheat monoculture) colonized the wheat rhizosphere significantly better than isolates of other genotypes, while a J-genotype isolate colonized wheat and flax rhizospheres to the same extent. This study suggests that, over many years of monoculture, the crop species grown in a field enriches for genotypes of 2,4-DAPG producers from the reservoir of genotypes naturally present in the soil that are especially adapted to colonizing the rhizosphere of the crop grown.  相似文献   

19.
To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere.  相似文献   

20.
A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the F. oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant F. oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P. fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant F. oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant F. oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six F. oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within F. oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号